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ABSTRACT

We revisit the problems of pitch spelling and tonality gues-
sing with a new algorithm for their joint estimation from a
MIDI file including information about the measure bound-
aries. Our algorithm does not only identify a global key
but also local ones all along the analyzed piece. It uses
Dynamic Programming techniques to search for an optimal
spelling in term, roughly, of the number of accidental sym-
bols that would be displayed in the engraved score. The
evaluation of this number is coupled with an estimation of
the global key and some local keys, one for each measure.
Each of the three informations is used for the estimation of
the other, in a multi-steps procedure.

An evaluation conducted on a monophonic and a piano
dataset, comprising 216 464 notes in total, shows a high
degree of accuracy, both for pitch spelling (99.5% on av-
erage on the Bach corpus and 98.2% on the whole dataset)
and global key signature estimation (93.0% on average,
95.58% on the piano dataset).

Designed originally as a backend tool in a music tran-
scription framework, this method should also be useful in
other tasks related to music notation processing.

1. INTRODUCTION

In symbolic music representations, pitches are expressed
in different ways. In their simplest form, in the MIDI stan-
dard, they are encoded as integers corresponding to a num-
ber of keys on a device. The representation of pitches is
much more involved in Common Western Music Notation
(CWN), where the denotation of each note depends on the
musical context of occurrence: the tonality (key) of the
piece, the voice-leading structure (ascending or descend-
ing melodic movements), the harmonic context...

If we reason modulo octaves, every pitch class, between
0 and 11 semitons, can be denoted in several ways, using a
note name, in C, D, E, F, G, A, B, and an accidental mark in[, Z, ^, \, ], acting as a pitch class modifier. Pitch-Spelling
(PS) is the problem of choosing appropriate names to de-
note some given MIDI pitch values in CWN.

In the tonal system, fixing a (global) key for a piece de-
fines some default, privileged, names and accidentals. This
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rule serves two important purposes in practice for the rea-
der of a music score. On the one hand, since the default
accidentals are not printed, the number of symbols dis-
played on the score is reduced and hence the readability
is eased. On the other hand, the key signature immediately
poses a tonal context for the piece, and the presence of
other (non default) accidentals constitutes an indication of
the tonal function of the notes, which provides insight into
the composer’s intention, in particular regarding local key
changes. For instance, let us consider the last chord of the
56th measure of Mozart’s c minor Sonata’s 1st movement
(Figure 1a), which is resolved in the next bar on the sec-
ond inversion of an EZMajor triad, comprising a G natural
in the first voice of the left hand. By spelling the highest
note of the left hand in the chord of interest as GZ instead
of F\, Mozart chooses not to comply with the principle of
selecting an ascending accidental when a voice goes up,
and rather to express the harmonic function of dominant of
the dominant in EZ, which is the new tonality he is heading
to at this moment. In the same movement, measure 125
(Figure 1b), a chord composed of the exact same notes is
then spelled differently: an F\ has replaced the GZ, as the
tonal context is shifting back to the main tone and the har-
monic function has changed to dominant of the dominant
in c minor this time. This constitutes one of the numer-
ous examples (e.g., [1], Chopin’s first Ballade or Tristan’s
chord) of one chord being spelled differently depending
on its harmonic nature or tonal function and in this case
regardless of the melodic movements of its voices, which
shows that pitch spelling is indeed revealing in terms of
creative intent and not only useful to the readability of a
piece.

There is therefore a strong interdependency between the
problems of Pitch-Spelling, and (local and global) Key Es-
timation (KE).

A large variety of PS algorithms have been proposed,
which are able to guess the spelling of reference corpora
with a high degree of accuracy. Several such algorithms
have been designed according to musicological criteria,
selecting note spellings based on the analysis of voice-
leading, interval relationships and local keys [2, 3, 4], and
a principle of parsimony (minimisation of the number of
accidentals) [5]. Some procedures, also based on musi-
cological intuitions, reduce PS to optimisation problems
in appropriate data structures, e.g., the Euler lattice [6] or
weighted oriented graphs [7]. In other approches, datasets
of music scores are used to train models such as HMM [8]
or RNN [9] for PS. The system in the latter reference, esti-
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(a) Mozart, Sonata no 14 in c minor, mvt 1, measures 56-57.

(b) Mozart, Sonata no 14 in c minor, mvt 1, measures 125-126.

Figure 1. Tonal cues in chord spellings in Mozart’s Sonata no 14.

mates, in addition to PS, a key signature for the input piece,
with a high accuracy.

In this paper, sharing with [9] the goal of joint Pitch Spe-
ling and Key Estimation from MIDI data, we generalise the
KE problem from global key signature to global and local
keys. Our approach is algorithmic, following the very sim-
ple and intuitive idea to minimise the number of acciden-
tal symbols as they would appear on the engraved score.
Similar criteria of parsimony are also found e.g., in [5]. A
difference is that we are applying this principle in a tonal
context: assuming a key for the piece to spell, we count the
accidentals for the possible spellings according to the rules
of engraving, i.e., considering that the accidentals defined
by the key signature are not printed, and that a printed ac-
cidental holds for the embedding measure.

Our procedure works in two steps. Assuming that the
MIDI input is divided into measures, we first estimate, for
each key in a given set, the least number of printed acci-
dentals for all possible spellings in all measures. We use
this information in order to estimate a local key for each
measure, and each possible global key. Then, in a second
step, the above evaluation of the quality of spellings is re-
fined by taking into account (in addition to the number of
printed accidentals) the proximity of spellings to the evalu-
ated local keys. The estimated global key is the one giving
the best evaluation (cumulated for all measures), and the
spelling chosen is the one computed for this global key.

The prior division into measures is crucial in our appr-
oach because of its role in the rules of engraving (cf Sec-
tion 3.1). This assumption is not required in the above
cited papers, either those following algorithmic or ML ap-
proaches. The algorithmic papers rather use a sliding win-
dow of parametric size. With that respect, our procedure
applies to more restricted cases. However, this assumption
makes sense when dealing with quantized MIDI data, in
particular in the last step of a music transcription frame-
work, after rhythm quantization. Also, the estimated glo-
bal and local keys, which are somehow a side effect of our
PS procedure, may be useful, as descriptors, in other tasks
of processing of MIDI data for which metrical information
is known. Finally, apart from the boundaries of measures,
we do not need other information such as note durations or

voice separation (see the discussion on that point in Sec-
tion 5).

To summarize our contributions, we propose an original
and somewhat naive approach to two old problems, which
combines them and obtains very good results on challeng-
ing datasets. In Section 2, we present the preliminary no-
tions used to state the problems of PS and KE. The reader
well versed into these problems may skip this section. We
detail our procedure in Section 3 and present in Section 4
its evaluation on two datasets (one monophonic and one
piano), for a total of 216 464 notes, which has given very
good results.

2. PRELIMINARIES

We call part a polyphonic sequence of notes, organized in
measures (bars). Typically, it shall correspond to one staff
in CWN. Every note is given by values of pitch, onset and
duration. The representation of these values is described in
the two next subsections, before another subsection treat-
ing the subject of keys and signatures.

2.1 Pitch Representations

There are two classical alternative representations for the
note pitch, distinguishing the input and output of a pitch-
spelling algorithm:

• a MIDI value, in 0..128, which is a number of semi-
tones [10],

• a spelling, made of:

– a note name in A, . . . ,G,

– a symbol of accidental, amongst ^ (natural),Z (flat), [ (double flat), \ (sharp), ] (double
sharp),

– an octave number in -2. . . 9.

The lowest MIDI value 0 corresponds to C^-1 (B\-2), and
the highest one, 128, is G\9 (AZ9). The 88 keys of a piano
correspond to the MIDI numbers 21 (A^0) to 96 (C^7). A
MIDI value modulo 12, is called pitch class. The pitch
class of a note ν is denoted by pc(ν).
Every note name is associated a unique pitch class: 0 for
C to 11 for B. An accidental symbol acts as a pitch class
modifier: [, Z, ^, \, ], respectively add -2, -1, 0, 1, and 2 to
the pitch class of the note name component in a spelling.
In the following, the symbol ^ is sometimes omitted, i.e.,
written as a space. Altogether, with the octave component,
this principle permits to associate a unique MIDI value to
a given spelling. In the other direction, there are several
alternative valid spellings for a given MIDI value, as sum-
marized in Figure 2 for the 12 pitch classes.

For every pitch class, the 2 or 3 alternative spellings of
Figure 2 have different names. Hence, for the purpose of
finding a spelling for a pitch of MIDI value m, is is suf-
ficient to choose one of the 2 or 3 possible names for m
modulo 12. The corresponding accidental symbol and oc-
tave number can then be deduced from the name chosen.
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pitch class spelling1 spelling2 spelling3
0 D[ C B\
1 DZ C\ [B]]
2 E[ D C]
3 [F[] EZ D\
4 FZ E D]
5 G[ F E\
6 GZ F\ [E]]
7 A[ G F]
8 AZ G\
9 B[ A G]
10 [C[] BZ A\
11 CZ B A]

Figure 2. Enharmonic spellings for each pitch class.
Fugue	in	A	Major	BWV	864	measure	33
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b	minor	(2) Figure 3. Bach, Fugue in A Major BWV864, measure 33, rh.

Example 2.1. Figure 3 presents the right-hand part in mea-
sure 33 of the Fugue in A Major BWV864 of J.S. Bach.
The MIDI values of the two notes on the first beat of the
measure are 66, with possible spellings either F\4 or GZ4,
and 74, with possible spellings either D5, or C]5, or E[5.
Here the chosen spelling does not induce any accidental, as
F\ is included in the key signature. An alternative spelling
to the one on the score for these two notes could thus be GZ,
D but it would generate an added accidental on the G since
the signature does not contain any GZ; hence we observe
the importance of the key signature for pitch spelling.

2.2 Time information

In this paper, we assume that the onset and duration val-
ues of notes are rational numbers, expressed in fraction of
a measure. The choice of a time unit is not really rele-
vant in this work. The informations related to time that is
important in our procedure are actually:

• an ordering and equality relation on onsets, for sort-
ing the notes in input and detecting notes starting
simultaneously,

• the number of measure to which a note belongs, i.e.,
the detection of bar changes in the flow of input
notes.

We call grace-note a note of theoretical duration zero. We
use this term generically for a note which is part of an or-
nament (appoggiatura, gruppetto, mordent, trill etc). Two
notes are called simultaneous if they have the same onset
and are not grace notes. This definition can correspond
to notes involved in the same chord, or notes in different
voices and starting simultaneously.

Example 2.2. For instance, the two first notes of Figure 3
do not really constitute a chord but they are simultaneous
since they share the same onset: 0. The time signature for

the measure is 9/8, hence the two first notes F\ and D^ both
have a duration of 1

9 bar, whereas the next semi-quaver F\5,
starting at the onset 2

9 , has a duration of 1
18 .

2.3 Key Signature and Key

A Key Signature (KS) is an integral number k between -7
and 7, which indicates that by default, |k| note names shall
be altered by a sharp accidental symbol (when 0 < k ≤
7) or a flat accidental (when −7 ≤ k < 0). The names
of the notes altered are defined according to the order of
fifths: F\,C\,G\,D\,A\,E\,B\ for the sharps (k positive)
and BZ,EZ,AZ,DZ,GZ,CZ,FZ, for the flats (k negative). In
a score, a KS indication is placed at the beginning of a part
and will influence the display of the spelling of notes in
every measure, as explained in Section 3.1. The KS can be
changed during a part.

From the notational point of view (i.e., for engraving), the
choice of KS will change drastically the way the notes are
displayed on the score, as it influences the number of acci-
dental symbols printed, hence the readability of the score.

From a musical point of view, a KS together with a mode,
defines a global key K for a piece, which is a central no-
tion in tonal music. Indeed, the key identifies a diatonic
scale, whose first note (amongst seven notes), called the
tonic note, represents the main tonal focus of the piece.
In Figure 4, we describe 15 key signatures and the tonic

of associated keys. Keys defined by the same KS and dif-
ferent modes are called relative.

Additionally to the global key of a piece (or part), some
alternative local keys can be identified for extracts of the
piece, and might diverge from the global key through mod-
ulations. In this work, we shall estimate a local key for
each measure in a part, and this information is used for
pitch spelling (Section 3.3).

We shall consider below, in our joint Pitch Spelling and
Key Estimation procedure, the major mode, and three mi-
nor modes: harmonic minor, melodic minor (also called
ascending minor) and natural minor (also called descend-
ing minor or Aeolian). The three minor modes differ by the
alteration of some degrees in the scale, notably the leading
tone (or subtonic in the case of the natural minor scale) and
the submediant with accidentals not in the key signatures:
seventh degree (raised) for harmonic minor, and sixth and
seventh degrees (raised) for melodic minor.

Only the major and harmonic minor modes are used for
global Key Estimation. The melodic and natural minor
modes are only used for local Key Estimation, see Sec-
tion 3.3 and Section 4.3 for a discussion on occurrences of
these modes in pieces used for evaluation. We shall con-
sider a measure of distance between keys defined by Got-
tfried Weber in [11] (see Appendix A.1), see also [12] for
other use of Weber’s table in the context of Key Estimation.

In theory, the list of key signatures can be extended on the
right and on the left, respectively through double sharps
and double flats. For instance, with k = 8 (G\ major), F is
altered with a double sharps (F]), with k = 9 (D\ major),
F and C are altered with double sharps (F], C]), etc. We do
not consider the case of extended KS in this work, as they
are very rarely found.
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key signature −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
major mode CZ GZ DZ AZ EZ BZ F C G D A E B F\ C\
minor modes AZ EZ BZ F C G D A E B F\ C\ G\ D\ A\

s0 :
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Figure 4. Key signatures and keys.

In both major and minor modes, the keys associated with
key signatures respectively -7 and 5, -5 and 7, and -6 and 6
have tonics with the same pitch class, but different names.
These keys are called enharmonic. They correspond to the
3 first and 3 last columns in Figure 4. Melodies written
in either of two enharmonic keys cannot be distinguished
by ear (in equal temperaments) as changing a key for its
enharmonic preserves not only the intervals but also the
pitch class of every note. Therefore, spelling in one or the
other of enharmonic keys is essentially a matter of choice.
Usually, the keys with KS 5 (5 sharps, e.g., B major) or
KS -5 (5 flats, e.g., DZ major) are preferred over their en-
harmonic equivalents with respectively KS -7 (e.g., CZma-
jor) and KS 7 (e.g., C\major). But it is not always the case,
for instance the Prelude and Fugue, BWV 848, of Bach’s
Well-Tempered Clavier are in C\ major.

3. ALGORITHMS

We present in this section the procedure that we are using
to estimate, in the same process, best spellings, a global
key and one local key per measure, for a given sequence
of input notes. Roughly, it works measure by measure, by
comparing the number of accidentals in all spellings for
all candidate global keys in a given set. This exhaustive
comparison is done through dynamic programming tech-
niques, based on the principle used to decide which acci-
dentals must be printed or not in CWN (presented in next
Section 3.1). The estimated local keys are used to refine
the selection of spellings in each measure, in case of ties.

3.1 Notational Convention Modulo

In order to lighten the notations, and ease the readability,
some accidental symbols are not printed in scores in CWN.
Following a principle of parsimony, the notational conven-
tions are roughly that: the accidentals in the key signature
are omitted by default, and the other accidentals need not
be repeated in the same measure. There is moreover a re-
striction to this rule, summarised as follows in [13]: It ap-
plies only to the pitch at which it is written: each additional
octave requires a further accidental.

Let us present below a relaxed version of this convention,
without the above restriction for octaves. Our approach
amounts in some way to reasoning modulo 12, replacing
the notion of pitch by the notion of pitch class. This appli-
cation of the principe of parsimony is more suitable to the

problem of Pitch Spelling [5], which is more concerned in
counting the accidentals than in printing them.

Formally, the definition of the relaxed convention is based
on a notion of spelling state, or state for short. Such a
state s is a mapping from the note names in {A, . . . ,G}
into accidental symbols in {[, Z, ^, \, ]}. Let us assume a
key signature k ∈ {−7, . . . , 7} and a measure containing a
sequence ν1, . . . , νp of p notes, enumerated by increasing
onsets. An initial state s0 for the measure is built from k as
expected (see Figure 4): for k = 0, s0(n) = ^ for all name
n, for k = 1, s0(F) = \ and s0(n) = ^ for all other name
n, etc. For 1 ≤ i ≤ p, the state si is computed by updating
the previous state si−1 as follows, where n and a are the
name and accidental of νi:

i. if si−1(n) = a, then si = si−1, and a is not printed,

ii. otherwise, si(n) = a, si(n′) = si−1(n′) for all n′ 6=
n, and a is printed.

Example 3.1. In Figure 3, for instance, at all onsets be-
fore 5

9 , the spelling state is composed of F\, C\, G\ with
every other note of the scale being natural. On onset 5

9
however, the state changes for the first time in the measure
and now contains A\ instead of A^.

The next onset also induces a change in the state with G^
being replaced by G\, which is a note present in the ascend-
ing minor melodic mode of B. It is interesting to remark
that Bach used it in a descending motion, therefore a pitch
spelling process relying too much on motion direction be-
tween notes would have failed here.

The spelling state then stays the same until onset 15
18 with

the return of A^ (belonging to the natural minor mode of
B) and finally G^ at onset 16

18 , hence the last states of the
measure are the same as the one it started with.

3.2 Processing One Measure in a Key

Let K be a key with key signature k ∈ {−7 . . . 7} and
let ν̄ = ν1, . . . , ν` be a sequence of notes inside a measure,
with known MIDI values and unknown spellings. In order
to find the spellings for ν̄ with the least number of printed
accidentals, according to the conventions of Section 3.1, it
is fortunately not necessary to enumerate all theO(3`) pos-
sible spellings of ν̄. Indeed, for that purpose, it is sufficient
to perform a shortest path search, using the state structure
of Section 3.1. Before presenting the details of the search
method, let us formulate an additional hypothesis, that is
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Figure 5. Beethoven, Sonata 21 ”Waldstein”, measures 1-3, lh.

relevant musically and turned out to be important from a
combinatoric point of view:

(h) two simultaneous notes in the same pitch class must
have the same name.

The hypothesis (h) is not a strict notational convention, al-
though counter examples are very rare. However, we do
not assume the other direction (simultaneous notes with
same name must be in the same pitch class), as it can oc-
cur fairly frequently in tonal music, at least from the end
of the nineteenth century, for instance in a dominant ninth
chord with an appoggiatura on the ninth (e.g., D F\ A C F^
in G major), much appreciated by Ravel, among others.

Example 3.2. Without the hypothesis (h) stated above, the
presence of numerous chords inside of one measure made
the complexity of PSE explode in cases such as the begin-
ning of the Waldstein Sonata, displayed in Figure 5. The
treatment of simultaneous notes allows the algorithm not
to treat all possible spellings for each apparition of dou-
bled notes inside a chord (in this example one of the C’s
in the repeated C major chord need not be treated once the
other C’s spelling has been determined).

In order to ensure the hypothesis (h), we consider another
state variable c ∈ C = {A, . . . ,G}{0,...,11} which is a par-
tial mapping of pitch classes into note names. It is used to
memorize the name associated to a pitch class when pro-
cessing a subsequence of simultaneous notes in ν̄. The
spelling of a note with pitch class p and note name n is
called compatible with c iff c(p), if defined, is equal to n.

Let S = {[, Z, ^, \, ]}{A,...,G} be the set of possible values
for the state variable s defined in Section 3.1, I = {1 ≤
i < � | νi and νi+1 are simultaneous}, Ī = {1, . . . , �} \ I ,
and let us consider the following set of configurations:

V =
{
〈s0, 0〉

}
∪ S × Ī ∪ S × S × C × I.

The configuration 〈s0, 0〉 is initial, where s0 is the initial
state associated to K as in Section 3.1. In configurations
of the form 〈s, i〉 ∈ S × Ī we have one state s for a note
index i ∈ Ī . These configurations are dedicated to the
processing of single notes. The other configurations, of
the form 〈s, t, c, i〉 ∈ S × S × C × I contain additional
information in t and c for processing a sub-sequence of
simultaneous notes, ensuring in particular hypothesis (h).

We consider a set of transitions E ⊂ V ×N×V , containing
the weighted edges of one of the following forms:

〈s, i− 1〉 w−−→
n,a

〈s′, i〉 (1)

〈s, i− 1〉 w−−→
n,a

〈s′, s, c′, i〉 (2)

〈s, t, c, i− 1〉 w−−→
n,a

〈s′, t, c′, i〉 (3)

〈s, t, c, i− 1〉 w−−→
n,a

〈s′, i〉 (4)

Every above case means that there exists a spelling of νi
with name n and accidental a, which is moreover compat-
ible with c in cases (3) and (4). In transitions (1)-(4), s′ is
the update of s as defined in Section 3.1 (cases i, ii). How-
ever, since the purpose of state s is no more score engrav-
ing like in Section 3.1, but the the search of a pitch spelling,
we shall distinguish below, for the definition of the weight
value w, the cases when the accidental a is counted from
the cases when it is not counted (and not anymore printed
or not printed like in Section 3.1).
The transition (1) processes the single note νi which is not
simultaneous with νi+1. The condition for counting a is
the same as the condition for printing in Section 3.1 (cases
i, ii):

• if s(n) = a, then s′ = s and a is not counted,

• otherwise, s′(n) = a, s′(n′) = s(n′) for all n′ �= n,
and a is counted.

The transition (2) initiates the processing of a subsequence
of two or more simultaneous notes, when νi is simulta-
neous with νi+1. It makes a copy of the current state s
in the second component, and create c′ = {〈p, n〉}, with
p = pc(νi). The accidental a is counted or not, and s up-
dated into s′, under the same conditions as in (1).
The transition (3) performs one step of the processing of
a subsequence of simultaneous notes, again when νi is si-
multaneous with νi+1. It propagates the frozen copy of
state t (without modifying it) and updates c into c′ as fol-
lows:

• if c(p) is defined and equal to n, then c′ = c, s′ = s
and a is not counted,

• if c(p) is undefined, then c′ = c∪{〈p, n〉}, moreover,
if t(n) �= a, s is updated into s′ with 〈n, a〉 and a is
counted, otherwise, s′ = s and a is not counted,

The transition (4) terminates the processing of a subse-
quence of simultaneous notes, when νi is not simultaneous
with νi+1. The conditions for counting a and updating s
into s′ are the same as in (1).
Finally, the weight value of each transition in (1)-(4) is:

1. w = 0 if a is not counted, or if K is in harmonic
minor or melodic minor mode, and νi corresponds to
an altered (raised) degree in the corresponding scale
and a is the accidental for this degree in the scale.

2. otherwise, w = 1 if a ∈ {Z, ^, \},
and w = 2 if a ∈ {[, ]}.
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The purpose of the above exception for minor modes is to
help the estimation of keys with minor modes in the next
section.

The oriented graph G = 〈V,E〉 is acyclic. The vertex
〈s0, 0〉 is called the source of G (it has no incoming edge)
and the vertices of S × {`} are called targets of G (they
have no outgoing edge).

Intuitively, a path starting from the source vertex 〈s0, 0〉
and ending with a target vertex of V , and following the
edges of E, describes a spelling of the sequence of notes ν̄
in input. The cumulated sum of the weight values w of
edges involved in such a path amounts to a count of the
accidental symbols printed.
The problem of searching for spellings of the notes of ν̄
with a minimal number of printed accidentals reduces to
the search in G of a path with a minimal cumulated weight,
from the source vertex into a target vertex of V . That can
be done in time O(|V | + |E|) with a greedy Viterbi al-
gorithm [14], tagging the vertices of V with cumulated
weight values. It proceeds in a forward way, starting from
the source vertex, such that the tag of a vertex v is the
weight of a minimal path leading to v.

For efficiency, the graph G is built on-the-fly, starting
from the source vertex 〈s0, 0〉, and adding vertices along
with the computation of their tagging, following edges sat-
isfying the above conditions. This strategy ensures a prun-
ing of unnecessary search branches, making the approach
efficient for a use on practical cases, as described in Sec-
tion 4.

3.3 Processing One Part

We assume given a sequence of m measures containing
notes with known MIDI values and unknown spellings. Let
us consider a fixed array of keys K̄ = K1, . . . ,Kn. Our
Pitch Spelling approach works by filling a table of dimen-
sions n×m with best spellings for every key in K̄ and ev-
ery measure, using variants of the algorithm of Section 3.2
for each cell. Then, one estimated global key is selected
in K̄, according to the table content, and the spellings in
the corresponding row of the table can be applied to the
input.
We proceed in several steps, building actually several ta-
bles, with several variants for the domain of weight values.

3.3.1 Step 1: Computation of a First Spelling Table.

In the first step, we compute a table T of dimension n×m,
such that the cell T [i, j] contains the cumulated weight
(in N) of a best spelling, according to the algorithm of Sec-
tion 3.2, with K = Ki and ν̄ are the notes of measure j.

3.3.2 Step 2: Estimation of Candidate Global Keys

We compute the sum of each row in T , and save in a list L
of candidate global keys the keys of K̄ in major and har-
monic or natural minor modes with a smallest sum (there
may be ties).

3.3.3 Step 3: Computation of a Grid of Local Keys

In a second table G of dimensions n × m, we shall store
estimated local keys. The cellG[i, j] shall contain the local

key estimation for the measure number j, assuming that
Ki is the global key. The estimation is done column by
column (i.e., measure by measure).

For each measure number 0 ≤ j ≤ m, we compute a
rankingRw

j of the keys in K̄, according to the values (in N)
of T [0, j], . . . , T [n, j], the smallest weight value being the
best.

Then, for the same j and for each 0 ≤ i ≤ n we com-
pute two other rankings Rp

j,i and Rg
j,i of K̄, according to

respectively the Weber distance to the previous estimated
local key and the assumed global key (the smallest distance
is the best). More precisely, the value associated to the key
Ki′ ∈ K̄, with 0 ≤ i′ ≤ n, for computing its rank in Rp

j,i

is (see Appendix A.1 for the Weber table):

• the Weber distance between Ki′ and Ki if j = 0,

• the Weber distance betweenKi′ and the previous lo-
cal key in the same row G[i, j − 1], if j > 0.

And the value associated to the key Ki′ when computing
its rank in Rg

j,i is the Weber distance between Ki′ and Ki.
Finally, for j and i, we aggregate the three rankings Rw

j ,
Rp

j,i, and Rg
j,i into a unique ranking Rj,i, by comparing,

for each 0 ≤ i′ ≤ n, the mean of its three ranks from all
the rankings – see [15] about this method. The estimated
local key in G[i, j] is the one with the best rank in Rj,i.

In practice, the computation of G can be restricted to the
rows present in the list L extracted at step 2.

3.3.4 Step 4: Computation of a Second Spelling Table

In this final step, we compute a last table U of dimension
n ×m (or length of L×m since the computation of U can
also be restricted to the rows present in the list L), using
the same algorithm as in step 1, but with more involved
weight values.

These weight values, used to replace the w ∈ N in Sec-
tion 3.2, are tuplets of integers, with the following compo-
nents, for U [i, j]:

1. the value w ∈ N of Section 3.2,

2. the number of accidentals which do not occur in the
scale associated to the estimated local key, for the
notes ν̄ of measure j and the global key K = Ki,

3. the number of spellings not in the chromatic har-
monic scale [1] of the estimated local key,

4. the number of accidentals with a color different from
the global key signature ki of Ki (i.e., [ or Z when
ki > 0 and \ or ] when ki < 0),

5. the number of CZ, or B\, or FZ, or E\.
The components (2) and (3) will second the former weight
value (1) in order to refine the search of best spelling
thanks to the information gained with the local key esti-
mation in step 3. The two last components (4) and (5) have
been added for the purpose of tie-breacking.
We consider two orderings on the domain of above weight
values:
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W`ex : the lexicographic comparison of the tuplets with
the 5 components (1)-(5),

W+: the lexicographic comparison of the 4-uplets with,
for first component the sum of (1) and (2), and for
next components (3), (4), and (5) respectively.

Using the same technique as in step 2, we extract from L
one unique estimated global key Ki ∈ K̄, using the above
refined weight values, and apply the spellings found in the
row i of the table U .

Example 3.3. A printout of the first table (step 1) com-
puted when treating the Fugue BWV 864 (see the extract
in Figure 3) can be found in Appendix A.2.

Here, 2 global candidates are obtained (step 2): A major
(3 sharps) and F\ minor (3 sharps) as their cumulated row
costs are close and inferior to all the others. Only their cor-
responding rows will then be computed in the second table
(step 4), this time taking into account local tonal analy-
sis (performed during step 3) to refine the choice between
candidate best paths. The second table is also displayed in
Appendix A.2.

Only 1 global candidate remains at the end: F\ minor
(3 sharps). Even if the piece is in A major instead of F\
minor, the process found the correct global key signature,
which is what impacts the pitch spelling. This information,
along with the local tonalities computed in each measure
and used in the second table to choose between paths with
the same number of accidents, was critical in finally select-
ing a spelling. Indeed, for this piece, the algorithm reached
an accuracy of 100% compared to the groundtruth 1 .

3.4 Rewriting Passing Notes

After choosing a spelling with the algorithm of Section 3.3,
we apply local corrections by rewriting the passing notes,
using a slight generalisation of the rewrite rules proposed
by D. Meredith in the original PS13 Pitch-Spelling algo-
rithm [4], step 2.

Every rule applies to a trigram of notes ν0, ν1, ν2, and
rewrites the middle note ν1, by changing its name. In Fig-
ure 6, we present the rules for particular cases of notes. In
general however, the rules are defined by patterns compar-
ing the respective note names of ν0, ν1, and ν2 (without
the accidentals), and the difference between their pitch (in
number of semitones). For instance, in the left-hand-side
CCZC of the first rule broderie down, ν0, ν1, and ν2 all
have the same note name C, the difference, in semitons,
between ν0 and ν1 is −1 and the difference between ν1
and ν2 is +1. This rule rewrites the middle CZ (ν1) into B.

The rewrite rules are applied from left to right to the se-
quence spelled notes. Note that at each rewrite step, at
most one rule can be applied.

3.5 Deterministic Variant

We propose a variant of the algorithm presented in Sec-
tions 3.2 and 3.3, which is more efficient but less exhaus-
tive. This algorithm, called PS13b (as in ”PS13 with bar

1 See Appendices A.2 and A.3 for more details on the processing of
Bach’s Fugue BWV 864 (Example 3.3).

broderie down C CZ C → C B C
broderie up C C\ C → C DZ C
descending11 C CZ A → C B A
descending12 C C[ AZ → C BZ AZ
descending21 C A\ A → C BZ A
descending22 C A\ AZ → C BZ AZ
ascending11 A A\ C → A BZ C
ascending12 AZ A\ C → AZ BZ C
ascending21 A CZ C → A B C
ascending22 A CZ C\ → A B C\

Figure 6. Rewrite rules for passing notes (particular cases).

info”), is very similar to PS13 [4], except that it uses the in-
formation on measures, which is assumed available in this
paper but not in [4], in order to estimate global and local
keys. In [4], that estimation is done (implicitely) by count-
ing the number of occurrences of the (assumed) tonic note
in a window whose optimal size was evaluated manually.

In the algorithm PS13b, the choice of the spelling with
name n and accidental a for the input note νi (Section 3.2,
transition rules (1)-(4)), is forced to the (unique) spelling
in the chromatic harmonic scale of the current key K [1].
Hence, the transitions are deterministic, and there is no
need to search for best spelling in a measure because there
is only one. The rest of the algorithm works as described
in Section 3.3. The complexity of the table construction in
this case is O(n × p) where p is the total number of notes
in input and n is the number of keys considered. This com-
plexity is significantly better than the one of the exhaustive
algorithm in Sections 3.2 and 3.3. In counterpart, some po-
tentially correct spellings will be missed (see Section 4.3).

4. EVALUATION

4.1 Implementation

The algorithms PSE (of Section 3.3) and PS13b (of Sec-
tion 3.5) have been implemented 2 in C++20. This lan-
guage was chosen for the sake of efficiency and for integra-
tion into larger systems. The implementation is object ori-
ented, with general classes for pitches, keys, etc, and data
structures specific to the algorithm, such as states, bags of
best paths and tables.

The input must be provided by a note enumerator, asso-
ciating to each natural number a midi pitch, a bar number,
and a flag of simultaneity (with the next note). Therefore,
our algorithm can be integrated in a larger project. This
has been done for a MIDI-to-score transcription frame-
work, where the timings (in particular the bar boundaries)
are computed before pitch spelling.

A Python binding, based on pybind11 [16], was also writ-
ten and used for evaluation. It offers calls (in Python) to the
methods of the C++ implementation, for the various pro-
cedures and steps presented in Section 3.

For the evaluation, we used the Music21 toolkit [17],
in association with the above Python binding. Music21

2 The C++ code as well as the Python evaluation scripts are publicly
accessible at https://gitlab.inria.fr/pse/pse.
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parses the MusicXML files in the evaluation datasets (see
Section 4.2) and extracts for each note the information nee-
ded by the algorithm:

• the MIDI key value,

• the number of the measure the note belongs to,

• a flag telling whether the note is simultaneous with
the next one.

This information is fed to the PS procedure, and the spel-
lings computed are compared to the ones in the original
scores. Moreover, some scores are produced in output that
highlight the errors of our procedure with colour codes,
and mark each measure with the estimated local key 3 .

4.2 Datasets

Two main datasets were used for performance evaluation:
a monophonic (complex) one, originated from the Lamar-
que-Goudard rhythm textbook [18] D’un Rythme à l’Autre,
and the ASAP piano dataset [19].

Performances of both algorithms described in Section 3
(PSE and PS13b) were assessed on the integrality of the
Lamarque-Goudard dataset, containing 250 excerpts, as
MusicXML files, from pieces of extremely various styles,
from Bach and Scarlatti to Wolf, Duparc, Debussy, Ibert...

Evaluation was also executed on 5 separate corpora from
the 222 pieces of the ASAP piano dataset, also in Mu-
sicXML format. All Bach preludes and fugues from the
Well Tempered Clavier present in ASAP were used, ex-
cept Preludes BWV 856 and 873 for technical reasons. All
sonata movements by Mozart and Beethoven included in
ASAP were also tested, as well as the K 475 Fantaisie by
Mozart. Every one of the 13 Chopin Etudes contained in
ASAP, from both opus 10 and 25, was used, as well as the 8
Rachmaninov preludes present, from both opus 23 and 32.
The cumulated total of notes spelled by our two algorithms
for this evaluation reaches a value of 216 464.

4.3 Results and Discussion

Experimentations were conducted for several combina-
tions of the weight domains in {W`ex ,W+}, with the best
results obtained when using the weights of W+. The exe-
cution time is about 1.68s on average per piece of the eval-
uation corpus (subset of Bach WTC), with the exhaustive
algorithm PSE presented in Section 3.3, whereas it is only
0.04s on average per piece with the deterministic variant
PS13b presented in Section 3.5, with results less accurate
by more than 1%.

A summary of the evaluation results is presented in Ta-
ble 1. The detailed results are also accessible online 3 .
They are organised by corpus, each comprising a folder
for each of the algorithm PSE and PS13b. Results for al-
ternative versions of the algorithms corresponding to dif-
ferent ways of combining weights to compute costs (either
lexicographically or additively) are also included). Every
folder contains a table summarizing the results obtained

3 See https://github.com/florento/PSEval/ for the evaluation results,
including annotated scores and tabular summaries.

on all the pieces in the considered corpus. In addition
to the tables, folders relating to the Bach, Beethoven and
Lamarque-Goudard corpora include the annotated Music-
XML scores of the treated pieces, where the spelling errors
are annotated with color codes, and green notes indicate an
initial error corrected by the final rewriting. The annota-
tions also include the global key estimation, and local key
estimations for each measure. The score obtained after the
execution of PSE on Bach’s Fugue BWV 893 in b minor is
included in Appendix A.3 as an example.

Regarding global and local tonality estimation, our algo-
rithm achieves very good results when we compare key
signatures together but tends to prefer minor tones to their
major relatives. This can be explained by the large number
of notes a minor tonality possesses in our acceptation, as
we accept spelling from both harmonic and natural minor
modes, as well as the ascendant melodic one. The only er-
ror of global tone estimation on our whole Well-Tempered
Clavier dataset is directly due to this tendency: the pres-
ence of natural B’s in the BWV 870 prelude (C major of
book 2), in a piece where flat Bs are also numerous due to
modulations to F major, D minor etc., did not prevent our
algorithm from estimating the piece as written in D minor,
because these natural B’s were interpreted as part of the
ascendant melodic minor mode of D, instead of indicators
of a C major context.

About enharmonic tones, which are absolutely impossi-
ble to distinguish when only pitches and durations of notes
are given, if the algorithm only proposed the correct global
tone or its enharmonic counterpart among its global candi-
dates at the end of the first pass, and if its final estimated
global key is enharmonic to the correct one, then the piece
is renamed in the enharmonic rival global tone and errors
are computed on this version. This way of treating that is-
sue is in accordance with the definition of a well spelled
piece by [6], also shared with [4], and [2], relying on cor-
rectness of the intervals of the piece.

4.4 Comparison With Other Systems

On the task of global tonality guessing (KE), we have com-
pared our algorithms’ performances to the ones obtained
with the Krumhansl-Schmuckler (KS) model for key de-
termination, as implemented in the Music21 Python libra-
ry [17]. This famous key-finding algorithm computes for
every major and minor tonality a correlation coefficient be-
tween profile values of the tested key and total durations of
their corresponding pitch class in the musical piece consid-
ered. It then chooses the best tonality according to the cal-
culated correlation coefficients. It is interesting to note that
our algorithms only need to know measure delimitations
and not note durations whereas KS uses note durations and
does not care about measures. On the whole corpus (both
ASAP and Lamarque-Goudard) we attain a 93% correct-
ness of key signature determination on average, while KS
obtains a 75% accuracy in total.

The results for global tonality guessing (KE) on the La-
marque-Goudard (LG) dataset are is rather low, in com-
parison to ASAP. The LG corpus, extracted from a rhythm
textbook, consists of 250 short excerpts of longer pieces.
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Table 1. Accuracy results of both pitch spelling algorithms on pieces from widely different styles and correctness of their global key
signature estimation, compared to Krumhansl-Schmuckler algorithm’s performances (Music 21 implementation).

number
of spelled
notes

pitch
spelling
PSE

pitch
spelling
PS13b

key estimation
PSE

key estimation
PS13b

key estimation
Krumhansl-
Schmuckler

Bach WTC ASAP
corpus

55530 99.50% 98.27% 99.09% 98.29% 87.27%

5 movements from
Mozart Sonatas
present in ASAP

10043 99.11% 97.30% 100% 100% 80%

Fantaisie K. 745 plus
5 movements from
Mozart Sonatas

13830 97.65% 95.97% 80% 80% 60%

33 movements from
Beethoven Sonatas

87292 97.64% 95.65% 92.32% 95.71% 66.15%

13 Etudes by Chopin 25103 96.71% 96.03 % 96.15% 96.15 % 84.62%
4 Rachmaninov Pre-
ludes

7022 98.76% 97.49% 100% 100% 100%

Lamarque-Goudard 27687 98.46% 98.23% 76.90% 74.30% 50.60%

The pitches and duration of notes appearing in extracts are
not necessarily representative of the whole pieces, which
explains why KS performs rather poorly on it, since its
correlation coefficients with tonal profiles become erro-
neous. Our algorithms, mainly relying on accidentals num-
ber minimization to infer the tonality, therefore prove sig-
nificantly more robust when it comes to shorter extracts.

We do not provide a comparison table on Pitch Spelling
results for several reasons. First, we assume given mea-
sure information, unlike the algorithms PS13 [4], CIV [8]
or PKSpell [9]; to this respect, a comparison would not
be fair. Second, most of the former evaluations of pitch
spelling algorithms used as a benchmark the Musedata da-
taset proposed by D. Meredith [4]. We could not evalu-
ate our algorithms on this dataset because it does not in-
clude the measure boundary information required by our
procedures. Since note durations are included in Muse-
data, it would be possible to conduct an evaluation on this
dataset by manually providing a time signature for each of
its 216 pieces. Nevertheless, with success rates (for PS) of
99.41% with PS13 [4], 99.82% with CIV [8] and 99.87%
with PKSpell [9], the remaining room for improvements
on this benchmark is rather marginal, and we preferred to
focus on larger datasets like ASAP to evaluate and improve
our algorithms.

The recent system PKSpell [9], for which it is reported a
0.13% error rate on MuseData (the best results so far), has
also been evaluated on 33 pieces of the challenging piano
dataset ASAP [19]. It shows on this dataset an accuracy
of 96.50% for the pitch spelling task and 90.30% for key
signature estimation. Since the identities of the 33 pieces
for evaluation are not disclosed in [9], it is not feasible for
this paper to report performances on the exact same pieces.
However, with an accuracy of 98.19% on average for pitch
spelling on 110 pieces (by 5 different composers ranging
from Bach to Rachmaninov) from the same ASAP dataset,
as reported on Table 1, and 95.58% for global key signa-
ture estimation, it is likely that the proposed PSE algorithm

(and PS13b) should at least have similar performances to
PKSpell, if not better.

5. CONCLUSION

We have presented two algorithms, PSE and PS13b for
joint pitch spelling and estimation of global and local keys,
from MIDI data including information on measure bound-
aries. Originally thought to be integrated in a transcription
framework, these procedures could also be used in vari-
ous tasks of music notation processing. Since PS13b has
proven to be very efficient, it could also be used for dis-
playing music notation from MIDI data in real-time.

The evaluation on challenging datasets has shown robust
results both for pitch spelling and key signature estimation.
Regarding the estimation of keys, there is currently a bias
towards minor tonalities which are often preferred to their
major relative tones that should be corrected. However it
does not impact the chosen key signature.

Several directions can be explored in order to improve
the current approach, such as a refinement of the weight
domain for taking into account note durations and metric
weight (strong or weak beats) when computing the best
path in a given measure. Moreover, in order to improve the
accuracy of the tonal analysis, some subtler musical cri-
teria could be implemented, such as cadence detection or
chord classification as well as a process to detect justified
key signature changes.

As outlined in Section 2.2, the only parameters related
to durations that we are considering in our algorithms are
the division into measures and knowledge about the simul-
taneity of notes (which in our case only depends on their
onsets). The results of our experiments are already solid,
although the seemingly important parameter of individual
note durations is ignored. We shall try to include this pa-
rameter to see how it can include the results, however, it
is not clear to us what weighting to give to durations in
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the search of best spellings presented in Section 3.2, while
keeping our model independent of the corpora considered.

Another way to extend our approach to other genres, per-
haps less tonal, would be to integrate new modes into the
computation of the PS table. For instance, one may con-
sider the integration of jazz modes (e.g., Ionian, Dorian
etc) in order to tackle the problem of pitch spelling for
jazz, which has not been studied at lot in the literature.
This could be of interest in particular for the notation of
jazz soli, improvisations, and bass lines for instance.
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A. APPENDIX

In this appendix, we present some details about the procedure (Section A.1) and two samples of evaluation results, for
illustration. The complete evaluation results may be found at https://github.com/florento/PSEval/.

A.1 Table of Weber

The table of relationship of keys defined in [11], and used in Section 3.3, step 3, is displayed below. Keys in major mode
are uppercase, keys in minor mode are lowercase.
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A.2 Execution Tables for the Fugue BWV 864

We display below the verbatim of the tables computed when processing the Fugue BWV 864, see Example 3.3.

First table computed for processing the Fugue BWV 864 (Example 3.3):

119

https://github.com/florento/PSEval/


spelling 813 notes
PSE: first table
Row Costs:
Gbmajor (6b) cost accid=199 dist=0 chromarm=188 color=10 cflat=25
Dbmajor (5b) cost accid=251 dist=0 chromarm=237 color=19 cflat=46
Abmajor (4b) cost accid=291 dist=0 chromarm=280 color=35 cflat=44
Ebmajor (3b) cost accid=279 dist=0 chromarm=274 color=123 cflat=24
Bbmajor (2b) cost accid=252 dist=0 chromarm=258 color=246 cflat=8
Fmajor (1b) cost accid=219 dist=0 chromarm=222 color=274 cflat=0
Cmajor (0) cost accid=169 dist=0 chromarm=175 color=344 cflat=0
Gmajor (1#) cost accid=123 dist=0 chromarm=130 color=3 cflat=4
Dmajor (2#) cost accid=71 dist=0 chromarm=78 color=3 cflat=4
Amajor (3#) cost accid=38 dist=0 chromarm=43 color=2 cflat=4
Emajor (4#) cost accid=69 dist=0 chromarm=81 color=1 cflat=4
Bmajor (5#) cost accid=113 dist=0 chromarm=124 color=1 cflat=4
F#major (6#) cost accid=154 dist=0 chromarm=165 color=0 cflat=0
Ebminor (6b) cost accid=179 dist=0 chromarm=205 color=23 cflat=19
Bbminor (5b) cost accid=220 dist=0 chromarm=257 color=30 cflat=34
Fminor (4b) cost accid=255 dist=0 chromarm=283 color=76 cflat=29
Cminor (3b) cost accid=229 dist=0 chromarm=279 color=159 cflat=12
Gminor (2b) cost accid=204 dist=0 chromarm=262 color=293 cflat=4
Dminor (1b) cost accid=167 dist=0 chromarm=222 color=293 cflat=0
Aminor (0) cost accid=130 dist=0 chromarm=175 color=344 cflat=0
Eminor (1#) cost accid=110 dist=0 chromarm=130 color=3 cflat=4
Bminor (2#) cost accid=67 dist=0 chromarm=78 color=3 cflat=4
F#minor (3#) cost accid=33 dist=0 chromarm=43 color=2 cflat=0
C#minor (4#) cost accid=69 dist=0 chromarm=81 color=1 cflat=4
G#minor (5#) cost accid=111 dist=0 chromarm=124 color=1 cflat=5
D#minor (6#) cost accid=145 dist=0 chromarm=165 color=0 cflat=0

Second table computed for processing the Fugue BWV 864 (Example 3.3):

Row Costs:
Amajor (3 sharps) cost accid=38 dist=35 chromarm=3 color=4 cflat=1
F#minor (3 sharps) cost accid=33 dist=21 chromarm=0 color=0 cflat=0

A.3 Annotated Score of the Fugue BWV 893

The Fugue BWV 864, in the previous section and Example 3.3, was spelled with PSE with an accuracy 100%, see

https://github.com/florento/PSEval/blob/941d7e10731fefdcd28cdac1c53a58cd28d132f2/Results ASAP/Bach/PSE/
BWV864 Fugue.musicxml

Each time that one our algorithms makes some spelling errors, our evaluation script produce a copy of the original
(musicXML) score with the mistakes annotated. For instance, the four errors in the spelling obtained with PSE for the
Fugue BWV 893 from the ASAP dataset are highlighted in red in the following score:

https://github.com/florento/PSEval/blob/941d7e10731fefdcd28cdac1c53a58cd28d132f2/Results ASAP/Bach/PSE/
BWV893 Fugue.musicxml

or, for a PDF version:

https://github.com/florento/PSEval/blob/941d7e10731fefdcd28cdac1c53a58cd28d132f2/Results ASAP/Bach/PSE/
BWV893 Fugue.pdf

All scores processed with our method for the evaluation presented in Section 4, for the two datasets of Section 4.2 (see
Table 1 for the list), with annotations as well as tables of results, are available at

https://github.com/florento/PSEval/
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