
TOKENIZATION OF MIDI SEQUENCES FOR TRANSCRIPTION

Florent Jacquemard
INRIA/CNAM

florent.jacquemard@inria.fr

Masahiko Sakai
Nagoya University

sakai@i.nagoya-u.ac.jp

Yosuke Amagasu
Nagoya University

amagasu@trs.css.i.nagoya-u.ac.jp

ABSTRACT

There generally exists no simple one-to-one relationship
between the events of a MIDI sequence, such as note-on
and note-off messages, and the corresponding music nota-
tion elements, such as notes, rests, chords, and ornaments.

We propose a method for building a formal correspon-
dence between them through a notion of tokens in an in-
put MIDI event sequence and an effective tokenization
approach based on a hierarchical representation of music
scores. Our tokenization procedure is integrated with an
algorithm for music transcription based on parsing wrt a
weighted tree grammar. Its effectiveness is shown in ex-
amples.

1. INTRODUCTION

In the context of compiling (lexical analysis) and in Nat-
ural Language Processing (NLP), tokenization is the act
of dividing a character sequence into elementary subse-
quences called tokens. The primary purpose of tokeniza-
tion is to identify, in the early steps of processing, mean-
ingful subsequences of characters in preparation for the
next steps. For instance, tokenization consists of find-
ing keywords and identifiers with automata-based pattern-
matching techniques in compiling. For NLP based on sta-
tistical learning, tokenization aims at building sequential
encodings of character sequences into integer vectors, us-
ing a dictionary of tokens, for training language models.

In languages based on Latin alphabets (including pro-
gramming languages), tokens are generally words or sub-
words. The tokenization into words, in particular, is eased
by space separation. The case of written Japanese language
is more complicated since there is no space separation (al-
though some punctuation exists). Therefore, some real-
time tokenization process is required when reading a text.
In the case of hiragana characters (phonetic characters),
ambiguity may arise in tokenization, leading to confusion.

Similar ambiguity problems may occur when process-
ing symbolic music data in sequential form, in particular
MIDI data, in order to extract more structured information.
A MIDI flow (or file) is essentially an unstructured se-
quence of messages, each one representing an elementary

Copyright: © 2024 Florent Jacquemard, Masahiko Sakai, and Yosuke Amagasu.

This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

event for the production of music with an electronic instru-
ment. Two common events are the start of a note (note-on),
corresponding to a key press, and the end of note (note-
off), for a key release. On the other hand, higher-level
musical elements of Common Western musical notation,
such as notes, rests, chords, grace notes, and other orna-
ments may correspond to several successive MIDI events,
and conversely. Therefore, extracting such notational ele-
ments from a MIDI flow, in e.g., a task like MIDI-to-score
transcription, requires a processing similar to tokenization.

Let us illustrate this point of view with sneak observa-
tions on the short MIDI sequence of Figure 1, and some of
its possible denotations as a 4/4 measure in a music score.
We use a representation similar to a piano-roll, with note
pitches on the vertical axis, time on the horizontal axis, and
note-on events depicted as black dots and note-off as white
dots. Several grouping of these events into tokens are con-
sidered in cases (a) to (h) of Figure 1 and correspond to
different notations. Note that the piano-roll is the same in
all these cases. In each case, the tokens, called T0 to Tn
(n depending on the case) are represented with blue boxes.
Intuitively, all events in a token Ti represent one or several
music notation elements occurring at the same time posi-
tion τi in a score. The time position τi associated with the
token Ti is indicated on the axis under the corresponding
blue box. The notation elements represented may be e.g.,
one note, one chord, some grace notes and one note, etc.
In other terms, the groupings defined by the tokens can be
seen as a re-alignment of MIDI events, like with a rhythm
quantization functionality of a Digital Audio Workstation
(DAW), except that the alignment points τi are not evenly
distributed in a grid. One strategy for defining the align-
ment points τi according to hierarchical structures is pro-
posed in Section 4.

Going back to Figure 1, in the first tokenization (a),
and corresponding notation (a)’, the two first note-on
events (D4 and A4) belong both to the first token T0, and
their matching note-off events belong to the next tokens,
resp. T1 and T2. This situation corresponds to two notes
starting simultaneously on the first beat of the measure
(time position τ0 = 0), and ending on different later beats:
beat 2 (time position τ1 = 1

4) for D4, and beat 3 (time po-
sition τ2 = 1

2) for A4. It is denoted as an interval tied to a
quarter note.

In the tokenization in Figure1(f) however, both the note-
on and note-off events of D4 belong to the first token T0,
aligned at time position τ0 = 0 (beat 1). It follows that this
note is a grace-note located at τ0. On the opposite, the A4
has its note-on in T0 and its note-off in T1, aligned at time

98

mailto:florent.jacquemard@inria.fr
mailto:sakai@i.nagoya-u.ac.jp
mailto:amagasu@trs.css.i.nagoya-u.ac.jp
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

0 11
4

1
2

3
4

(a) Tokenization 1

��
�
�

�
� ��

��

(a)’ Score obtained from (a)

0 11
4

3
8

7
16

1
2

3
4

(b) Tokenization 2

�� � �
���� �

�
�

(b)’ Score obtained
from (b)

0 11
4

1
2

(c) Tokenization 3

�
� �

�
�

�
�

(c)’ Score obtained from (c)

0 11
8

1
4

1
2

3
4

(d) Tokenization 4

��
�
���

��
�

��

(d)’ Score obtained from (d)

0 11
4

3
8

1
2

3
4

(e) Tokenization 5

�
��

�
�����

�
�
�

(e)’ Score obtained from (e)

0 11
2

3
4

(f) Tokenization 6

��
�
�

�
�� ��

��

(f)’ Score obtained from (f)

0 11
2

(g) Tokenization 7

�
� �

�
��

��

(g)’ Score obtained from (g)

0 11
4

1
2

5
8

3
4

(h) Tokenization 8

�
�
���

� ��
��

(h)’ Score obtained from (h)

Figure 1. Examples of MIDI tokenizations and transcriptions.

position τ1 = 1
2 (beat 3). Hence, this note is a half note,

with the D4 as an ornament, see Figure 1(f)’.
The interpretation of the other tokens of Fig. 1 is similar.

Note that in case (c), and (g), two pairs of matching note-
on and note-off events are embedded in the third token. It
follows that the last note D4 has two grace notes E and B[.

Therefore, we see in Figure 1 many possible denotations
of the same MIDI sequence. How were chosen the tokens
in this picture, in order to be associated a notation? Which
denotation shall be considered the best?

In this paper, we propose a formal definition of the no-
tion of token of MIDI events, as an attempt to clarify the
correspondence between MIDI events and music notation

elements. We characterize in particular what notation can
be associated with a token, defining several types of tokens,
corresponding to different notations. We focus in particu-
lar on notation elements which are not the most studied in
the literature on music notation and symbolic music pro-
cessing in general, namely the rests and the ornaments.

The main motivation for this study is the processing
of MIDI data, in particular its transcription into Com-
mon Western music notation, a task sometimes referred to
as MIDI-to-score Automatic Music Transcription (M2S-
AMT). We propose an efficient procedure for tokenization
and its integration into a M2S-AMT framework. The ap-
proach is based on parsing [1], in its usual computational
sense: the inferrence of some (hierarchical) structure from
unstructured (sequential) data. In these settings, we con-
sider tree structures for defining hierarchically the time
boundaries of tokens. A weighted tree grammar generates
those trees, and the estimation of the best tree (wrt weight)
in the grammar’s language is performed by a dynamic
programming algorithm. This method is implemented in
a framework for MIDI-to-score transcription in develop-
ment.

Related Work. Compiling (textual) programming lan-
guages generally involves steps of lexical analysis and syn-
tactic analysis (parsing) [1]. In some sense, we follow a
similar approach in our transcription approach, briefly de-
scribed above. However, a significant difference is that, in
our case, several tokenizations of the MIDI input are pos-
sible, and we must explore possibilities to choose the one
giving the best notational result.

In the literature on music generation, several works pro-
pose sequential encodings of MIDI data in order to train
models like the Transformer [2, 3, 4, 5, 6, 7, 8, 9, 10].
Some of these encodings, often referred to as MIDI tok-
enization, are implemented in the library MIDItok [11].
Their purpose is to format MIDI data as a sequence of to-
kens, where, roughly, each token represents one elemen-
tary component of a MIDI event (position, duration, pitch
value, etc). This notion of elementary token is very dif-
ferent from the one we present here, where every token is
made of several MIDI events (considered atomic) and con-
veys higher-level musical information about the notation.
Some strategies for grouping elementary tokens are pro-
posed e.g., in [7], in order to reduce training sequences.
Another critical difference is that the purpose of the above
tokenization approaches is the generation of MIDI data by
trained model, whereas our purpose is the construction of
music notation from MIDI data.

The sequential input and structured output of M2S-AMT
are of very different natures, and establishing a relation-
ship between input MIDI events and output score elements
is not a trivial task, considering the richness of music nota-
tion. For instance, many existing M2S transcription tools,
including general public ones, like MuseScore, fall short of
detecting ornaments and rests. As observed formarly [12]
problems often come from mismatches between input and
output. Several transcription tools ignore note-off events
to cope with the mismatches. In other works, note-on and
note-off events are treated in different passes [13].

99

We believe that the notions of tokens and token types pro-
posed here can help in making progress in the production
of music notation, such as in M2S-AMT, in particular re-
garding the treatment of rests and ornaments in preprocess-
ing. However, it should be noted that in the present work,
we only consider homophonic input (monophonic voices
including chords), whereas [13, 14] deal with the transcrip-
tion piano input, which is a much harder problem.

The main contributions of this paper are the following:

• the definition of tokens as sequences of MIDI
events corresponding to notation elements (Sec-
tion 2),

• the proposition of an efficient procedure using trees
for dividing a MIDI sequence into tokens (Sec-
tion 3),

• a dynamic programming algorithm for parsing a
MIDI sequence into structured music notation,
joined with the above tokenization procedure (Sec-
tion 4).

2. MIDI EVENTS, TOKENS AND SCORE
ELEMENTS

In this section, we define a correspondence between mu-
sic notation elements and sequences of MIDI events called
tokens, as described informally in Figure 1. Each token is
given a token type, a note, rest, or chord, with or without
an ornament, corresponding to the score element. On the
other hand, a MIDI event in a token may have an individual
role, which we call an event role in the token.

2.1 MIDI Events

We consider a typical representation, in the form of so-
called timestamped MIDI events, of the note-on and note-
off messages in a MIDI file, often depicted as a piano-roll.
A MIDI event e (or event for short) is made of the follow-
ing components:

• a real-time value ts(e) ∈ Q, expressed in seconds,

• an integral pitch value pitch(e) ∈ {0, . . . , 128},
• an integral velocity value vel(e) ∈ {0, . . . , 128},
• an attribute flag(e) which is either on when e is a

note-on message, or off for a note-off message.

A MIDI sequenceE = 〈e1, e2, . . . , en〉 is a finite sequence
of MIDI events with increasing timestamps, i.e., such that
ts(e1) ≤ ts(e2) ≤ · · · ≤ ts(en). The length of E is de-
noted by |E| = n and the concatenation of two sequences
E and E′ is denoted by E E′. We use the set-like-notation
e ∈ E to express that the event e belongs to the MIDI se-
quence E. The subset of note-on (resp. note-off) events in
a sequence E of events is denoted by on(E) = {e ∈ E |
flag(e) = on} (resp. off(E) = {e ∈ E | flag(e) = off}).

The event matching e in a sequence E, denoted by e−1 is
the first note-off after e with the same pitch when e is a
note-on, and the note-on event d such that d−1 = e when e
is a note-off. Formally, for all event e,

• pitch(e−1) = pitch(e) and flag(e−1) 6= flag(e),

• if flag(e) = on, then ts(e) < ts(e−1) and for all e′

such that ts(e) < ts(e′) < ts(e−1), it holds that
pitch(e′) 6= pitch(e), and

• if flag(e) = off, then e−1 = d such that d−1 = e.

The matching operator is idempotent: (e−1)
−1

= e. We
shall consider below only well-formed MIDI sequencesE,
such that e−1 exists in E for all e ∈ E.

Example 1. Figure 2 presents the events e1, . . . , e10 of the
MIDI sequence in Figure 1. This sequence is well-formed,
and e1

−1 = e3, e2−1 = e4, e3−1 = e1, e4−1 = e2,
e5
−1 = e8, . . . , e10−1 = e7.

2.2 Tokens

In order to be converted into music notation, the MIDI
events of an input sequence can be aligned to some salient
time points, like the grid points in DAWs or in earlier
rhythm quantization algorithms [15, 16]. It may happen
that several events, neighbours in a MIDI sequence E are
aligned to the same time point. The notion of token aims
at capturing the subsequences of events of E made simul-
taneous after alignment. More precisely, a token of E
is a non-empty subsequence T = 〈ei, . . . , ej〉 of E with
1 ≤ i ≤ j ≤ n, that is moreover closed wrt time equality:
every e ∈ E such that ts(e) = ts(ek) for some i ≤ k ≤ j
must be in T .

Intuitively, a token aims at containing some MIDI events
representing simultaneous score elements, i.e., elements
occurring at the same musical date (beat) in the score. This
can be the case of several notes involved in a chord, or of
one note with one or several grace notes, or another spe-
cific ornament (mordent, gruppetto, trill...). Note that we
are talking here about the theoretical simultaneity of notes
in the score, not of simultaneity in a performance. In the
score, all the notes of an ornament occur at the same theo-
retical date, in beats, as the note they decorate. However,
during a performance, they will occur shortly before or af-
ter the decorated note.

2.3 Event Role in a Token

Only some combinations of MIDI events will appropri-
ately fit into one case, corresponding to a notation, like
in Figure 1. Having too many events in a token may make
no sense. In order to capture tokens that can be considered
valid, i.e., that can be transcribed into simultaneous nota-
tion elements, we introduce the notion of role of a MIDI
event e in a token T . It is defined according to the flag
of e (on or off-note) and to the presence or not in T of the
matching event e−1, as presented in Figure 3.

Intuitively, the role grace note corresponds to notes with
a theoretical duration of 0 in a score. It can be an ap-
pogiatura, an accaciatura, or a part of another ornament,
which expresses the fact that both the start (note-on e) and
the end (note-off e−1) of the corresponding note belong to
the same token T .

100

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

ts 0.03 0.05 0.15 0.38 0.44 0.50 0.53 0.57 0.70 0.77
flag on on off off on on on off off off

pitch D4 A4 D4 A4 E4 B[4 D4 E4 B[4 D4
vel 110 100 0 0 45 90 110 0 0 0

Here, MIDI pitches are presented by note name and octave; D4 = 62, E4 = 64, A4 = 69, and B[4 = 70.

Figure 2. MIDI event sequence for Figure 1.

e−1 ∈ T e−1 /∈ T
e ∈ on(T) grace-note note
e ∈ off(T) goff noff

Figure 3. Role of event e in token T .

On the opposite, an event of role note corresponds to a
note starting in a token T (e ∈ on(T)), but ending in a
subsequent token (e−1 /∈ T).

A note-off event matching an event in the token will have
role goff. Otherwise, it shall have role noff. The event role
goff is important in the context of MIDI processing. In-
deed, events with this role correspond to micro-rests that
may occur e.g., when a key of a MIDI keyboard is released
before the key for the next note is pressed (i.e., the play is
not enough legato). In general, one does not want such arti-
facts to be transcribed literally, and in several transcription
procedures, micro-rests are discarded in a pre-processing
step relying on parameters to be set, like the maximal du-
ration of a micro-rest. In our approach, micro-rests are
detected as a special case of event role noff or goff in a
token, and may be discarded at will.

Example 2. The roles of events in the tokens represented
in (a) and (b) of Figure 1 are displayed in Figure 4.

2.4 Token Types and Validity

We shall use the number nsE(T) of notes sounding just af-
ter the timestamp ` of the last event of a token T . Formally,
it is defined as the following cardinality:

nsE(T) =
∣∣{e ∈ E | flag(e) = on, ts(e) ≤ ` < ts(e−1)

}∣∣
where ` = ts(e) for the last event e ∈ T i.e., for all e′ ∈ T ,
ts(e′) ≤ ts(e).

Example 3. The number of notes sounding just after the
tokens represented in (a) and (b) of Figure 1 are displayed
in Figure 5.

We consider a finite set K of type names that can be as-
signed a token T in a MIDI sequenceE as follows, accord-
ing to the respective roles of the events in T :

T has type chord with n (> 0) notes and an ornament of
size p (≥ 0), denoted by chn,p, if and only if

it contains n events of role note,

it contains p events of role grace-note,

each grace note occurs before any note in T , and

nsE(T) = n (the n notes sound after the token).

T has type rest denoted by r, if and only if
T = off(T)(6= ∅) and nsE(T) = 0,

T has type partial continuation, denoted by pc, if and
only if T = off(T)(6= ∅), and nsE(T) > 0.

The cases of a single note or an interval correspond re-
spectively to the types chord with 1 note and chord with 2
notes. We use the name chord for these types of abuse in
order to shorten the definition of token types. As explained
above, an ornament of size p corresponds to a sequence of
events occurring at the same musical date (beat) in a score.
In this description, we use, for simplicity, the generic term
of ”ornament of size p”, but we could distinguish between
different kinds of ornaments, such as mordent, gruppetto
or trill, or also a tremolo (or roll in the case of drums), by
analyzing the respective MIDI pitch values of the events
involved.

A rest corresponds to the case where some note ends
during the token T (a note-off e ∈ T). No other note
or grace note shall start in the same token (the condition
T = off(T) implies that on(T) = ∅), and every note
started before ends in T (condition nsE(T) = 0). More-
over, T contains no grace note (another consequence of
on(T) = ∅), since in CW music notation, no grace notes
or ornaments may be attached to rests. The latter case may,
however, correspond to a note played very shortly, and
wrongly interpreted as a grace note. In our framework, we
consider an option where such a grace note is transcribed
into a note with an articulation staccato or staccatissimo.

A continuation represents the prolongation of an event
(either a note or a chord), with a tie or a dot. A contin-
uation is partial when some but not all chord notes are
prolongated. Remark that no token exists with type (full)
continuation because we defined an empty set, which cor-
responds to a continuation, is not a token.

2.5 Token Validity

Tokens of the above types will be considered valid or not
for transcription, according to the case of input considered.

2.5.1 Monophonic case

When the input is considered as strictly monophonic, at
most one note shall sound at a time. Hence, a token con-
sidered valid in this case is a note, i.e., a chord with 1 note,
with an ornament of size p ≥ 0 or a rest. This case is ap-
propriate e.g., for the M2S transcription of a single voice,
of a monophonic instrument like winds or one piano voice
in strict counterpoint.

101

Figure 1(a) Figure 1(b)
event e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
role n n no no gn n n go no no n n no no n n n no no no

token T0 T0 T1 T2 T2 T2 T2 T2 T3 T3 T0 T0 T1 T2 T3 T4 T4 T4 T5 T5

where T0, T1, . . . are the displayed tokens from left to right in the corresponding figures.

Figure 4. Event roles in some tokens of Figure 1.

Figure 1(a) Figure 1(b)

token T0 T1 T2 T3 T0 T1 T2 T3 T4 T5

nsE(Ti) 2 1 2 0 2 1 0 1 2 0

Figure 5. Values of nsE for some tokens of Figure 1.

2.5.2 Homophonic case

This case generalizes the previous one by allowing some
chords in a monophonic voice. Then, tokens of all three
above types are considered valid, and the others are not
valid (discarded in the transcription procedure).
This case is appropriate for the M2S transcription of mono-
phonic instruments like strings (where some chords may
occur) or one voice of the piano.

2.5.3 Case of Drums

In the case of MIDI files recorded with electronic drumk-
its, see e.g., [17, 18], the MIDI pitches encode the drumkit
parts (snare drum, kick, toms, hi-hat, and different kinds
of cymbals) and the play mode (e.g., on the head or rim of
snare drum or toms, on the ride, edge, or bow of cymbals,
and so on) Moreover, in such input, the note-off events are
not significant (for instance, they are added at a fixed du-
ration, e.g., 20ms, after the matching note-on event) and
can be safely ignored. Concretely, for this case, we change
the definition of event role such that every e ∈ off(T) has
an extra role ignored, which excludes the rests from the
transcription output. Actually, in a post-processing step,
some rests are re-introduced by conversion of some con-
tinuations, when appropriate for the readability of the score
(see [18] for details).

The definition of token validity follows additional con-
straints for drums. First, only ornaments of size 1, called
flams, are allowed, and only for some parts of the drumkit.
Second, chords are allowed (the drum is a polyphonic in-
strument) but with some restrictions: sticks cannot play
more than two notes, and two notes played by pedals in-
volved in the same chord. Finally, some particular ef-
fects like cross-stick, rim-shot or buzz-roll (see descrip-
tions in [18]) require a particular processing of tokens.
Some possible errors of capitation by MIDI sensors also
need to be handled. We leave the details about these par-
ticular cases out of the scope of this paper.

2.5.4 Polyphonic case

This paper does not cover the polyphonic case, which re-
quires a step of voice separation. To directly cope with
polyphonic MIDI sequences, tokens are not just a partition
of the input sequence. In fact, multiple tokens shall corre-
spond to interleaved events in a MIDI-sequence, which is
a complex extension to handle.

We call tokenizer a procedure that takes in input a
MIDI sequence E and returns a sequence of valid tokens
T1, . . . , Tk that form a partition of E.

3. TREE-BASED TOKENIZATION PROCEDURE

In this section, we propose a tokenizer based on a tree
structure. Intuitively, the idea is that the salient time points
defining the tokens (by alignment of MIDI events) are
characterized by a recursive subdivision of time intervals to
reflect a metric organization of musical events [19]. This
point of view is more involved (and more realistic) than
considering regular space points in a grid (e.g., one point
every 16th note). It corresponds to a tree-based represen-
tation of music notation.

3.1 Real and Musical Time Scales

Here, we consider input MIDI sequences corresponding to
performances. Their MIDI events are timestamped in a
real time scale, whose units are seconds. By contrast, the
durations in a music score are expressed in a musical time
scale, whose units are beats or bars (given a time signa-
ture). The correspondence between these two time-scales
is ensured by a tempo function, converting real-time values
to musical-time ones. For the sake of presentation, we as-
sume here a coincidence of these two-time scales, or equiv-
alently, a constant tempo. We especially use a bar as a unit
of musical time. The extension of the approach presented
here to varying tempo functions is out of the scope of this
paper.

3.2 Time Intervals

A time interval I = [τ0, τ1) is defined by a pair of time
points τ0 ∈ Q and τ1 ∈ Q∪{+∞}: I starts at time τ0 and
ends just before τ1, i.e., [τ0, τ1) = {τ | τ0 ≤ τ < τ1}. In
the sequel, we use the notation start(I) for τ0 and end(I)
for τ1. The interval divn(I, i), for 1 ≤ i ≤ n, is the ith
sub-interval obtained by splitting I into n parts of equal

duration ∆ =
τ1 − τ0
n

when I = [τ0, τ1),

divn(I, i) = [τ0 + (i− 1) ·∆, τ0 + i ·∆).

If end(I) = +∞, then divn(I, i) is undefined. More-
over, for I = [τ0, τ1) with τ1 > τ0 + 1 (including the case
τ1 = +∞), we define unit(I) as the subinterval [τ0, τ0+1)
of duration one bar, and rem(I) for the remaining interval
[τ0 + 1, τ1), i.e., rem(I) = I \ unit(I). The latter is unde-
fined when τ1 < τ0 + 1.

102

bar

t1

bar

t2
bar

tn

ε

Figure 6. The form of trees

3.3 Trees

The trees defined in this section represent hierarchies of
nested time intervals, defining salient points for alignment
in tokens. Intuitively, the higher the points are in the hier-
archy (in the tree), the strongest the corresponding beat is,
from a meter point of view. The trees are labeled with two
kinds of symbols:

• every inner node is labeled with a function symbol
from a fixed finite set F ,

• every leaf is a node labeled with the empty symbol
ε or a token type in K, as defined in Section 2.4.

Every function symbol of F is associated with an opera-
tion on time intervals. We consider here two kinds of such
operations:

divn, for n > 0, divides an interval I into n sub-intervals
divn(I, 1), . . . , divn(I, n) of the same duration;

bar (bar split), divides an interval I in two parts: unit(I)
and rem(I).

Here, trees are in the form of Figure 6. Each left child of
bar represents the content of one measure. We restrict the
second argument of the bottom bar to ε for termination.

The set of trees labeled with symbols of F and K is de-
noted by T (F ,K). We denote by yield(t) the sequence
of token type names of K labelling the leaves of a tree
t ∈ T (F ,K). Note that yield(t) does not contain an empty
leaf symbol ε.

Example 4. Figure 7 depicts the trees corresponding to
the scores in cases (a) to (d) of Figure 1. Each tree, rooted
with bar, represents one measure whose content is the left
subtree.

3.4 Tree-based Tokenizer

Let t ∈ T (F ,K) and let I be a time interval associated
with the root node of t. We can associate a sub-interval of I
to every other node of t, following the above interpretation
of the symbols of F .

Example 5. In Figure 7, the time intervals associated with
each node of trees are represented in red. They are com-
puted from the interval assigned to the root node by recur-
sive application of the operators labeling the nodes.

Formally, the interval assignment is defined as follows,
where itv(t, I) is the sequence of the intervals labelling
the leaves of t.

itv
(
divn(t1, . . . , tn), I

)
= itv(t1, divn(I, 1)) . . .

itv(tn, divn(I, n)) if n > 0 and end(I) ∈ Q,
itv
(
bar(t1, t2), I

)
= itv(t1, unit(I)) itv(t2, rem(I))

if end(I) = +∞,
itv
(
θ, I
)

= I for θ ∈ K ∪ {ε}.

It can be observed that, when it is defined, itv(t, I) forms
a partition of I . It is always defined when I = [τ0,+∞)
and t has the form of a right combination.
The sequence of time points induced by the partition
itv(t, I) is called the grid of t of carrier I , denoted by
grid(t, I). Formally, if itv(t, I) is a partition of the form
[τ0, τ1), [τ1, τ2), . . . , [τk−1, τk) with τ0 = start(I) and
τk = end(I), for some k ≥ 0 (τk might be +∞), then:

grid(t, I) = 〈τ0, . . . , τk〉

To every time point τi in the grid, we can associate a
set Ti of events in E containing the MIDI events closer
to τi than to its neighbours τi−1 and τi+1 in the grid. For a
formal definition, we introduce a notation cp(τ1, τ2) to the
present center point of τ1 and τ2:

cp(τ1, τ2) = τ1 +
τ2 − τ1

2
=
τ1 + τ2

2

T0 =
{
e ∈ E | τ0 ≤ ts(e) < cp(τ0, τ1)

}
,

Ti =
{
e ∈ E

∣∣ cp(τi−1, τi) ≤ ts(e) < cp(τi, τi+1)
}

for all i, 0 < i < k.

Based on grid(t, I) and the above sequence
〈T0, . . . , Tk−1〉, we define

tokenize(t, I) = 〈(Ti0 , τi0), . . . , (Tip , τip)〉

where 0 ≤ i0 < . . . < ip ≤ k − 1 is the sequence of
indices 0 ≤ j ≤ p such that Tij 6= ∅. In the sequel, we use
a renumbered tokenized sequence as

tokenize(t, I) = 〈(T0, τ0), . . . , (Tp, τp)〉.

Example 6. For the trees of Figure 7 it holds that:

grid
(
t1, [0,∞)

)
= 〈0, 14 ,

1
2 ,

3
4 , 1,∞〉,

tokenize
(
t1, [0,∞)

)
= 〈(T0, 0), (T1,

1
4), (T2,

1
2), (T3,

3
4)〉,

grid
(
t2, [0,∞)

)
= 〈0, 14 ,

3
8 ,

7
16 ,

1
2 ,

3
4 , 1,∞〉,

tokenize
(
t2, [0,∞)

)
=

〈(T0, 0), (T1,
1
4), (T2,

3
8), (T3,

7
16), (T4,

1
2), (T5,

3
4)〉,

grid
(
t3, [0,∞)

)
= 〈0, 14 ,

1
2 , 1, 2,+∞〉

tokenize
(
t3, [0,∞)

)
= 〈(T0, 0), (T1,

1
4), (T2,

1
2), (T3, 1)〉

grid
(
t4, [0,∞)

)
= 〈0, 18 ,

1
4 ,

1
2 ,

3
4 , 1,+∞〉,

tokenize
(
t4, [0,∞)

)
= 〈(T0, 0), (T1,

1
8), (T2,

1
2), (T3,

3
4)〉,

where T0, T1, . . . are the displayed tokens from left to right
in the corresponding figures.

103

bar

div2

div2

ch2,0 pc

div2

ch2,1 r

ε

[0,∞)

[0, 1)

[0, 1
2
)

[0, 1
4
) [1

4
, 1
2
)

[1
2
, 1)

[1
2
, 3
4

) [3
4
, 1)

[1,∞)

0 11
4

1
2

3
4

(a) Tree t1 for Figure 1(a)

bar

div2

div2

ch2,0 div2

pc div2

r ch1,0

div2

ch2,0 r

ε

[0,∞)

[0, 1)

[0, 1
2
)

[0, 1
4
) [1

4
, 1
2
)

[1
4
, 3
8
) [3

8
, 1
2
)

[3
8
, 7
16

) [7
16

, 1
2
)

[1
2
, 1)

[1
2
, 3
4

) [3
4
, 1)

[1,∞)

0 11
4

3
8

7
16

1
2

3
4

(b) Tree t2 for Figure 1(b)

bar

div2

div2

ch2,0 pc

ch1,2

bar

r ε

[0,∞)

[0, 1)

[0, 1
2
)

[0, 1
4
) [1

4
, 1
2
)

[1
2
, 1)

[1,∞)

[1, 2) [2,∞)

0 11
4

1
2

(c) Tree t3 for Figure 1(c)

bar

div2

div2

div2

ch2,0 pc

ε

div2

ch2,1 r

ε

[0,∞)

[0, 1)

[0, 1
2
)

[0, 1
4
)

[0, 1
8
) [1

8
, 1
4
)

[1
4
, 1
2
)

[1
2
, 1)

[1
2
, 3
4

) [3
4
, 1)

[1,∞)

0 11
8

1
4

1
2

3
4

(d) Tree t4 for Figure 1(d)

Figure 7. Rhythm Trees for Figure 1

4. TREE LANGUAGES, PARSING AND
M2S-TRANSCRIPTION

In this section, we propose to use weighted tree grammar
in order to define languages of trees of Section 3.3. Then
we reduce M2S-AMT into the problem of parsing an input
MIDI sequence wrt such a grammar.

4.1 Tree Grammar and Cost of Readability

A weighted tree grammar is a tuple G = 〈N , A0,F ,K,R〉
where N is a finite set of non-terminal symbols, A0 ∈ N
is the initial non-terminal, F and K are as in Section 3.3,
and R is a finite set of weighted production rules. Every
production rule ofR has one of the following forms:

A
w−→ f(A1, . . . , An)

where A,A1, . . . , An ∈ N , f ∈ F , and w ∈ Q,
A

w−→ θ | ε
where A ∈ N , θ ∈ K and w ∈ Q.

For each rule ρ of one of the two above kinds, w ∈ Q is
called the weight of ρ, denoted by weight(ρ) = w. It is
used to compute a value of tree complexity (called cost of
readability). With the rules of the second kind, a readabil-
ity cost value w is associated with every θ ∈ K and non
terminal A.
Let us extend T (F ,K ∪ {ε}) to T (F ,K ∪ {ε} ∪ N), the
set of trees whose leaves can be labeled with type names
of K or non-terminals of N . A derivation D of G is a
sequence of the form: A0

ρ1−→ t1
ρ2−→ . . . tk−1

ρk−→ tk,
where, for all 0 < i ≤ k, ti−1, ti ∈ T (F ,K ∪ {ε} ∪ N),
ρi = Ai → ui ∈ R, the leftmost innermost occurence of
a non-terminal in ti−1 is Ai and ti is obtained from ti−1
by replacing this occurence of Ai by ui. We also write
A0

D−→ tk and abbreviate D = 〈ρ1, . . . , ρk〉. The above
derivation is called complete if tk ∈ T (F ,K ∪ {ε}) (i.e.,
is contains no more non-terminals).

The weight of D is defined by:

weight(D) =
k∑
i=1

weight(ρi).

The weight of a tree t ∈ T (F ,K) wrt G, also called cost
of readability of t is:

crG(t) = min
A0

D−→t

weight(D).

The grammar G might be omitted when clear from the con-
text. The purpose of tree grammars is to define a restricted
prior language of trees that are an acceptable output of
transcription.

4.2 Cost of Alignment

We assume that a cost alignment function
ca(θ, T, τ, τprev) is associated to a token T , a token
type θ ∈ K, and two time points τ and τprev such that
τprev < τ or τprev =⊥ with a undefined symbol ⊥.
This value is a summation of the time shifts induced by
aligning all the MIDI events in the token T to the time
point τ , if the token type is θ. Here, τprev is the time value
to which the former token of T is aligned. If the type of T
is not θ, then ca(θ, T, τ, τprev) = +∞. See Appenix A
for the concrete defintion of a cost alignment function.

Let us consider a tree t ∈ T (F ,K), a time inter-
val I , and the associated sequence of leaves yield(t) =
θ0, . . . , θp and sequence of pairs of token and time point
tokenize(t, I) = 〈(T0, τ0), . . . , (Tp, τp)〉.

The cost of alignment of E to the tree t and the inter-
val I , denoted by caE(t, I), is defined as the sum of the
ca(θi, Ti, τi, τ

′
i) for 0 ≤ i ≤ p where τ ′i =⊥ if i = 0;

otherwise τ ′i = τi−1.

4.3 Transcription Objective

The problem of transcription can be defined using the
above notions, by minimizing a combination of the two
cost measures defined above: the cost of alignment and the
cost of readability. More precisely, given an input MIDI
sequence E and a grammar G, we call transcription of E
wrt G, a tree t ∈ T (F ,K) minimizing the measure:

caE
(
t, [0,+∞)

)
+ crG(t) (1)

104

(a) Score: Sonate für Klavier Nr.11 A dur K.331 Mov.1

(b) The piano-roll of a human piano performance

(c) A transcription by our implementation

(d) A transcription by Logic

Figure 8. A transcription example

The trees of Section 3.3 are abstract descriptions of mu-
sic scores. The elementary score elements (symbols) cor-
respond to the names of token types (notes, rests, chords
etc in K) labelling leaves. The MIDI pitch of every note
can be extracted from the input MIDI sequence using the
definition of tokens in Section 3.4. A pitch-spelling algo-
rithm [20] is then necessary to cast these MIDI key values
to note names. Moreover, the durations are encoded in t by
the symbols of F labeling inner nodes. Additionally to the
operations on time intervals, some info about the output
score can be attached to the symbols of F . For instance,
we can express in a symbol divn whether we want the notes
below this symbol to be beamed or not.

4.4 Algorithm and Implementation

We designed and implemented an algorithm for the parsing
problem defined in Section 4 based on ordinary tabulation
technique.

Given in input a MIDI sequence E and a weighted tree
grammar, it returns a tree t minimizing (1) in Section 4.3.
Figure 9 presents the parsing algorithm designed based on
ordinary Dynamic Programming. It assumes that the input

midi-sequence E is played with a constant tempo and con-
verted to musical time so that one bar is identical to one
second.

The algorithm deals with a set of tabulated items, which
is kept by the variable C, as candidates of a parsing result.
each item contains

1. a current parse tree t (or a sequence of parse trees),

2. the sum w = caE(t, I) + crG(t) of the parse-tree
weight and its allignment cost (or the weight sum
of the parse trees and their allignment costs),

3. the set E|snd(I) of unprocessed events in the inter-
val I of the parse tree(s), and

4. the assigned time τprev of the last token in the parse
tree(s).

See appendix B for the detail.
The source code of this implementation is found in

URL 1 , and produces the command line utilities monopase

1 https://gitlab.inria.fr/qparse/qparselib

105

https://gitlab.inria.fr/qparse/qparselib

Input: Midi-sequence E, tree grammar G = 〈N , A0,F ,K,R〉.

Output: The tree t obtained from (t, w) := parse([0,∞), ∅,⊥).

Functions:
fst(I) (resp. snd(I)) denotes div2(I, 1) (resp. div2(I, 2)).
E|I = {e ∈ E | ts(e) ∈ I)} is the subsequence of events in an interval I .

parse(I, F, τ):

If F ∪ E|I = ∅ then Return 〈ε, 0〉 else
C := parseRec(unit(I), A0, F, τ)

C′ :=
{
〈bar(t, t′), w + w′〉 | 〈t, w, F ′, τ ′〉 ∈ C, 〈t′, w′〉 := parse(rem(I), F ′, τ ′)

}
Return 〈t, w〉 with minimum weight w among 〈t, w〉 ∈ C′.

parseRec(I, A, F, τ):

C := ∅ and T := F ∪ E|fst(I).
For each rule A w−→ u ∈ R, do

case u = ε: If T = ∅ then C := C ∪
{
〈ε, w,E|snd(I), τ〉

}
case u = θ ∈ K:

C := C ∪
{
〈θ, w + ca(θ, T, start(I), τ), E|snd(I), start(I)〉

}
case u = divk(A1 · · ·Ak): Let C0 = {〈〈〉, w, F, τ〉}.

For i = 1, . . . , k, do

Ci := min′
(⋃

〈〈t1, . . . , ti−1〉, wi−1, Fi−1, τi−1〉 ∈ Ci−1

〈ti, wi, Fi, τi〉 ∈ parseRec(divk(I, i), Ai, Fi−1, τi−1)

〈〈t1, . . . , ti〉, wi−1 + wi, Fi, τi〉
)

C := C ∪
{
〈divk(t1, . . . , tk), w

′, F ′, τ ′〉 | 〈〈t1, . . . , tk〉, w′, F ′, τ ′〉 ∈ Ck

}
.

Return C

min′(C): The set of 〈S,w, F, τ〉 ∈ C having minimum w for each 〈F, τ〉.

Figure 9. Parsing algorithm

for parsing monophonic/homophonic input in branch
mono2 and drumparse for drums in branch beta. The cur-
rent implementation recognizes the token type of partial
continuation as an ordinary continuation.

4.5 Example

In addition to former examples of monophonic 2 and
drum 3 transcription, we present an example of homo-
phonic transcription from a MIDI 4 in Figure 8. It is dif-
ficult to say that the result Figure 8(c) is a success, but it
gives us valuable hints for future work.

1. Some extremely short notes (see the piano roll in
Figure 8(b)) are recognized as grace notes.

2. There exist in the output mei unnecessary printed
accidentals, which are removed manually to ease
readability in Figure 8 (b). Such hander is not yet
implemented in current monoparse.

3. The generation of scores in musicXML format has
a bug that improperly transforms the continuations
of chords. The following notes seem strange: the
2nd note in the 4th bar, the 2nd and 4th note in the
7th bar, and the 2nd note in the last bar.

2 https://qparse.gitlabpages.inria.fr/docs/examples
3 https://gitlab.inria.fr/transcription/gmdscores
4 https://www.trs.css.i.nagoya-u.ac.jp/∼sakai/tenor2024/

5. CONCLUDING REMARKS

We have proposed an approach for the tokenization of
MIDI sequences which supports score elements such as
rests and ornaments. Implemented as a Dynamic Program-
ming algorithm, it is integrated into a framework of tran-
scription by parsing.

The identification of grace-chords, as well as arpeggiated
chords, shall be added to the cases of Section 2.4. Another
future objective is the processing of polyphonic input, like
piano MIDI files. When all voices are mixed into the same
MIDI file, the application of a voice separation procedure
is required. An important question is then whether voice
separation should be performed before, after, or jointly to
the parsing described in Section 4. Note that in the first
case, voice separation would have to deal with unquantized
MIDI input, and with quantized rhythms in the two latter
cases.

Acknowledgments

This research was supported by JSPS Kaken 20H04302.

6. REFERENCES

[1] D. Grune and C. J. Jacobs, Parsing Techniques, ser.
Monographs in Computer Science. Springer, 2008
2nd edition.

106

https://qparse.gitlabpages.inria.fr/docs/examples
https://gitlab.inria.fr/transcription/gmdscores
https://www.trs.css.i.nagoya-u.ac.jp/~sakai/tenor2024/

[2] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-
Y. Liu, “MusicBERT: Symbolic music understanding
with large-scale pre-training,” in Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021. Association for Computational Linguistics,
2021, pp. 791–800.

[3] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,
“Popmag: Pop music accompaniment generation,” in
Proceedings of the 28th ACM International Confer-
ence on Multimedia, 2020, pp. 1198–1206.

[4] G. Hadjeres and L. Crestel, “The piano inpainting ap-
plication,” arXiv preprint arXiv:2107.05944, 2021.

[5] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Si-
monyan, “This time with feeling: Learning expressive
musical performance,” Neural Computing and Appli-
cations, vol. 32, pp. 955–967, 2020.

[6] Y.-S. Huang and Y.-H. Yang, “Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions,” in Proceedings of the 28th ACM
international conference on multimedia, 2020, pp.
1180–1188.

[7] W.-Y. Hsiao, J.-Y. Liu, Y.-C. Yeh, and Y.-H. Yang,
“Compound word transformer: Learning to compose
full-song music over dynamic directed hypergraphs,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 1, 2021, pp. 178–186.

[8] J. Gardner, I. Simon, E. Manilow, C. Hawthorne, and
J. Engel, “MT3: Multi-task multitrack music transcrip-
tion,” arXiv preprint arXiv:2111.03017, 2021.

[9] N. Fradet, J.-P. Briot, F. Chhel, A. E. F. Seghrouchni,
and N. Gutowski, “Byte pair encoding for symbolic
music,” 2023. [Online]. Available: https://arxiv.org/
abs/2301.11975

[10] J. Ens and P. Pasquier, “MMM : Exploring conditional
multi-track music generation with the transformer,”
2020.

[11] N. Fradet, J.-P. Briot, F. Chhel, A. El Fal-
lah Seghrouchni, and N. Gutowski, “MidiTok: A
python package for MIDI file tokenization,” in 22nd
International Society for Music Information Retrieval
Conference (ISMIR Late-Breaking Demo), 2021.

[12] F. Foscarin, F. Jacquemard, P. Rigaux, and M. Sakai,
“A Parse-based Framework for Coupled Rhythm
Quantization and Score Structuring,” in Mathematics
and Computation in Music (MCM), ser. Lecture Notes
in Artificial Intelligence, vol. 11502. Springer, 2019.

[13] K. Shibata, E. Nakamura, and K. Yoshii, “Non-local
musical statistics as guides for audio-to-score piano
transcription,” Information Sciences, vol. 566, pp.
262–280, 2021.

[14] M. Suzuki, “Score transformer: Transcribing quan-
tized midi into comprehensive musical score,” in Pro-
ceediongs of the International Soc. Music Information
Retrieval Conference (ISMIR, Late-breaking Demo),
2021.

[15] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: a critique of pure quantification,” in Inter-
national Computer Music Conference Proceedings
(ICMC), 1994, pp. 52–59.

[16] A. T. Cemgil, B. Kappen, and P. Desain,
“Rhythm quantization for transcription,” Com-
puter Music Journal, vol. 24, no. 2, pp.
60–76, Jul. 2000. [Online]. Available: http:
//dx.doi.org/10.1162/014892600559218

[17] F. Jacquemard and L. Rodriguez de la nava, “Sym-
bolic weighted language models, quantitative parsing
and automated music transcription,” in 26th Interna-
tional Conference on Implementation and Application
of Automata (CIAA), 2022.

[18] M. Digard, F. Jacquemard, and L. Rodriguez de la
Nava, “Automated transcription of electronic drumk-
its,” in 4th International Workshop on Reading Music
Systems (WoRMS), 2022.

[19] J. Yust, Organized Time. Oxford University Press,
2018.

[20] D. Meredith, “The PS13 pitch spelling algorithm,”
Journal of New Music Research, vol. 35, no. 2, pp.
121–159, 2006.

A. COST ALIGHNMENT FUNCTION

Let E be an input MIDI sequence. For a token type θ ∈ K
and a token T of E, let θ(T) be defined by:

θ(T) = 1 if T has type θ and θ is valid in the case of
input considered (see Section 2.5),

θ(T) = +∞ otherwise,

The cost alignment function used in the implementation is
as follows:

ca(T, θ, τ, τp) =
θ(T)

∆(τp, τ)

∑
e∈T

ασ
(
r(e, T)

)
· |ts(e)− τ |

where ∆(τprev , τ) = τ − τprev if τprev 6=⊥; otherwise
a fixed constant value. σ is the sign of ts(e), τ and α+

and α− associate appropriate constants to the role r(e, T)
of e in T . Typically, αoffL > αoffR because note-off often
occurs earlier than expected.

107

https://arxiv.org/abs/2301.11975
https://arxiv.org/abs/2301.11975
http://dx.doi.org/10.1162/014892600559218
http://dx.doi.org/10.1162/014892600559218

B. ALGORITHM

This section gives details of the algorithm. Each function
works as follows.

parse: Assuming the following arguments:

• an interval I of midi-sequence E to be
parsed,

• a set F of events in prior to start(I), and

• the time point τ aligned the last parsed token
before start(I),

it returns a pair of the best weighted tree t and its
weight w for midi-sequence F ∪ E with alligning
all events in F to start(I).

parseRec: calculates possible best trees within one bar.
Assuming the following arguments:

• an interval I of midi-sequence E to be
parsed,

• a non-terminal symbol A of the grammar,

• a set F of events in prior to start(I), and

• the time point τ aligned the last parsed token.

it returns a set of tuples 〈t, w, F ′, τ ′〉 consisting of
the tree t with weight w and root nonterminal sym-
bolA for each possble pair of F ′ and τ ′ determined
in the calculation.

108

	 1. Introduction
	 2. MIDI Events, Tokens and Score Elements
	2.1 MIDI Events
	2.2 Tokens
	2.3 Event Role in a Token
	2.4 Token Types and Validity
	2.5 Token Validity
	2.5.1 Monophonic case
	2.5.2 Homophonic case
	2.5.3 Case of Drums
	2.5.4 Polyphonic case

	 3. Tree-based Tokenization Procedure
	3.1 Real and Musical Time Scales
	3.2 Time Intervals
	3.3 Trees
	3.4 Tree-based Tokenizer

	 4. Tree Languages, Parsing and M2S-Transcription
	4.1 Tree Grammar and Cost of Readability
	4.2 Cost of Alignment
	4.3 Transcription Objective
	4.4 Algorithm and Implementation
	4.5 Example

	 5. Concluding Remarks
	 6. References
	 A. Cost Alighnment Function
	 B. Algorithm

