
XNK AND HANDS2MIDICHANNELS: NEW SOFTWARE TOOLS FOR
COMPOSERS AND IMPROVISERS

Carlos Mauro
CMG Solutions – Tufts University
cmg.solutions.a@gmail.com
carlos.mauro@tufts.edu

ABSTRACT

In the evolving landscape of 21st-century music, com-
posers are turning to software tools to enhance creative
workflows and improve composing efficiency. This paper
introduces two novel tools independently developed by the
author: Xnk and Hands2MIDIChannels. Xnk is a deter-
ministic graphic music notation parser that processes .PNG
images to produce a .TXT file suitable for the bach.roll ob-
ject in MaxMSP. By merging qualities of abstract graph-
ics and traditional notations, Xnk provides an alternative
approach for composers in music sketching and compo-
sition. Meanwhile, Hands2MIDIChannels allocates MIDI
events corresponding to a keyboard instrument to specific
MIDI channels based on the hand that triggered the event.
This allocation is derived by cross-referencing the origi-
nal MIDI file with a synchronized video capturing the per-
former’s hand movements over the keyboard. Notably,
this tool offers invaluable utility to composers, improvis-
ers, and musicians with disabilities. It enhances composi-
tional efficiency by automating hand-based event assigna-
tion, enabling the swift transformation of improvisations
into readable scores. The paper will explore the techni-
cal aspects, justification, current limitations, and potential
avenues for both tools.

1. INTRODUCTION

Generalizing about the current state of contemporary mu-
sic composition proves to be a hard task. Nevertheless,
there is a consensus that technological advances in the last
25 years have had an unprecedented influence on all art
forms. Nowadays, at the dawn of artificial intelligence, the
previous statement resonates loudly.

In the case of concert music composition, technological
advances in recent decades have been used by composers
as a source of inspiration and as valuable tools. Despite the
new workflows made possible by technological advances,
there is still a lot of room for new technologies tailored for
music composers and improvisers.

The first software discussed in this paper is Xnk, a de-
terministic graphic music notation parser. The name de-
rives from the Romanian-born Greek-French composer,

Copyright: © 2024 Carlos Mauro. This is an open-access article distributed under

the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

architect and engineer Iannis Xenakis whose graphic
scores inspired the development of the software in ques-
tion. The Xnk software provides its users the power to
sketch/compose music by drawing, define instrumentation,
support arbitrary divisions of the octave, have complete
control over pitch range and length of the object, and, to
output a formatted string ready to be handled by the Bach
library [1] in the MaxMSP [2] environment for further pro-
cessing.

The second software that will be discussed is Hands2MI-
DIChannels, a tool that routes MIDI events to specific
channels based on the hand that triggered the event. This
is done by cross-referencing the original MIDI file with a
video that captured the performer’s hand movements over
the keyboard. Hands2MIDIChannels drastically decreases
the time it takes to create usable scores from improvisation
sessions on keyboard instruments.

This paper aims to present Xnk and Hands2MIDI-
Channels to the music notation technology community,
discuss their technical aspects, reason to exist, their practi-
cal applications, current limitations, and their possible fu-
tures. Both tools are undergoing patent review with the
United States Patent and Trademark Office (USPTO), em-
phasizing my commitment to legal protection.

2. XNK

2.1 Overview

Originally created in Python and later recreated in C++,
Xnk takes an arbitrary number of .PNG images of the same
size as inputs. For every inputted .PNG image, Xnk iden-
tifies events by iterating through all the rows looking for
consecutive filled pixels. When an event is identified, Xnk
stores the coordinates of the event onset and its duration.
After iterating through every .PNG image and extracting
the event information, a chronological sort takes place fol-
lowed by a pitch average sort. Chronologically sorting the
events’ onsets allows them to be organized from first to
last. The pitch average sort allows Xnk to organize the
voices from highest register to lowest register.

After sorting the events and voices, Xnk performs pitch
mapping using either a user defined range or, in its absence,
a predefined one.

Once the events are correctly mapped on the pitch space
(y-axis), a time-mapping is performed where the original
onset and duration values (x-axis) of the events are scaled
by a factor determined by user input. The pitch and time

80

mailto:cmg.solutions.a@gmail.com
mailto:carlos.mauro@tufts.edu
https://creativecommons.org/licenses/by/4.0/


Figure 1. Superiomposed representation of .PNG layers.

mapping guarantees a deterministic and faithful graphic to
traditional music notation translation.

At this point, the data is finally ready to be converted
into a string using the Bach’s library tree format. This
allows the data from Xnk to be opened in MaxMSP and
later through any mainstream music editor.

Link: Video of Xnk demonstration

2.2 Detailed Explanation

Xnk uses the following C++ libraries: OpenCV2, LibPNG.

2.2.1 Preparing the .PNG Images

Xnk interprets individual .PNG images as independent
voices. This gives the composer the power to think
about each image as either: individual instruments or
an ensemble of instruments. Because Xnk preserves the
independence of layers, each image will correspond to an
individual voice in the output. If the user inputs N number
of images, the output will have N number of voices.

The .PNG images can be created using tools such as
Adobe Illustrator, Concepts, Inkscape, etc. When using
these tools, the user needs to export each layer individu-
ally and store it as an isolated layer. This will ensure that
every layer is of the same size. See Fig. 1.

2.2.2 User-Defined Parameters

As Fig. 2 shows, Xnk gives its users control over the fol-
lowing parameters:

• Maximum Output (highest) Pitch.
• Minimum Output (lowest) Pitch.
• MIDI Velocity.
• Target Length.

The parameters Maximum and Minimum Pitch define the
pitch range of the output. These parameters expect the user
to input values in midicents. If not defined, they default to
a range from 10800 to 2100.

The MIDI Velocity parameter defines a uniform MIDI ve-
locity for the output. It takes integer values ranging from 0
to 127.

The Target Length parameter is used to calculate the
stretch factor that will be used for scaling the events’ on-
sets and duration. This parameter expects the user to input
the desire length of the output in milliseconds.

Figure 2. Xnk’ Parameter Input.

2.2.3 Pre-Processing Preparation

Before any processing takes place, Xnk reads and stores
the User-Defined Parameter values as well as the filepath
list that contains the location of the .PNG images.

2.2.4 Image Processing

1. An empty vector is created that will be used as a con-
tainer that will store the binarized images.

2. Xnk iterates through each string element in the filepath
vector created on the previous step. For each filepath
in the filepath vector:

• Loads the image found at the iterated filepath to
memory.

• Binarization of the image. This is done so that
Xnk only deals with 1s and 0s. This makes further
processing simpler and more efficient.

• Adds the binarized image data to the binarized
image container vector created before the start of
the iteration loop.

• Cleans up memory preparing the next iteration.
3. Creates an empty vector that will store vectors contain-

ing the Voice Event Data. The nested vector structure
is used to preserve the independence of each inputted
.PNG image.

4. Once all the images are binarized and stored to mem-
ory, Xnk starts the event identification process by iter-
ating through every binarized image stored at the bina-
rized image container vector. For each binarized image
in the binarized image container vector:

• Initializes an empty vector that will serve as a lo-
cal event container for the event data belonging
the current binarized image iteration.

81

https://youtu.be/vtnN04vht-c?si=GcItVbPH-0H4YJEy


• Iterates through every row.
• If it detects a series of contiguous filled pixels

with a length > 2, it identifies it as an event and
records the X and Y coordinates of the event on-
set, along with its duration, in the local event con-
tainer.

• Once a row iteration finishes, Xnk commits the
Local Event vector container to the Voice Event
Data vector container.

• Xnk cleans up the Local Event container and
moves on the next row iteration.

• After iterating through all the rows, Xnk moves
on to the next image in the binarized image vector.

2.2.5 Event and Voice Sorting

Once Xnk finishes extracting event information from the
inputted .PNG images, it is time to sort the data. The first
sort that takes place is a chronological sort.

To sort the data chronologically, Xnk iterates through ev-
ery voice in the Voice Event Data Container vector. For
every voice inside Voice Event Data Container:

• It organizes the events’ onsets so that they are stored
in chronological order.

After all the events inside the Voice Event Data Container
vector are organized chronologically, a pitch average sort
takes place.

To sort the Voices inside the Voice Event Data Container
vector, Xnk iterates through every voice in the Voice Event
Data Container vector. For every voice inside Voice Event
Data Container:

• The pitch average (y-axis) of the event coordinates
is calculated for each voice.

Once the average is calculated, Xnk reorganizes the data
from highest pitch average to lowest pitch average. This is
done so to improve the output readability.

2.2.6 Pitch and Time Mapping

After organizing the data appropriately, Xnk proceeds with
Pitch and Time Mapping processing. To map the y-axis
component of events to a pitch, Xnk identifies the max-
imum (Imx) and minimum (Imn) y-axis values from the
events extracted from the inputted .PNG images. Addition-
ally, Xnk consults the User Defined Parameters Maximum
Output Pitch (Omx) and Minimum Output Pitch (Omn) to
define the output pitch range.

With this information, Xnk computes the pitch mapping
using the following function:

P = (Omn +Omx)−
[
(Y − Imn)

(
Omx −Omn

Imx − Imn

)]
+Omn (1)

Where:

• P = Mapped Pitch.
• Y = y-axis component to be mapped.
• Omx = User defined output Maximum Pitch.
• Omn = User defined output Minimum Pitch.

• Imx = Maximum y-axis value from input data.
• Imn = Minimum y-axis value from input data.

After mapping all the events belonging to all voices in-
side the Voice Event Data Container vector, Xnk scales the
events onsets and durations to reach the User Defined Tar-
get Duration.

To do this, Xnk needs to find the Time Scaling Factor
(TSF). To this end, Xnk finds the and maximum x-axis
value (Tmx) present on the Voice Event Data Container
vector. Additionally, Xnk refers to the User Defined Pa-
rameter Target Length (TL).

The TSF is calculated using the following equation:

TSF = T l/Tmx (2)

Where:

• TSF = Time Scaling Factor.
• Tl = Target Length.
• Tmx = Maximum x-axis Value.

Xnk then scales all the events’ onsets and durations lo-
cated at the Voice Event Data Container vector by the pre-
viously calculated TSF.

2.2.7 Data to Bach’s llll Conversion

The final processing step of Xnk is making the processed
data readable by the Bachroll object in MaxMSP. To do
this, a .TXT file containing a string in MaxMSP’s Bach’s
library llll format is created. The overarching llll format is
as follows:

[[< voice1 >][< voice2 >][< voice3 >]]

Where each voice# is defined as:

[o [p d v]] [o [p d v]] ...

Where:

• o = Event Onset.
• p = Event Pitch.
• d = Event Duration.
• v = Event MIDI Velocity.

Once Xnk iterates through all the voices and the events
inside the Voice Event Data Container vector, it creates the
.TXT file containing the formatted string.

2.2.8 Opening in MaxMSP

The created .TXT can be opened inside MaxMSP by call-
ing the read method of the bach.roll object. See Fig. 3

2.3 Justification

The purpose of Xnk is to provide its users with a tool that
can translate graphical scores into music notation that sup-
ports an unlimited number of voices and arbitrary divisions
of the octave. It provides its users a faithful representation
for any inquired graphic score. Xnk strives to achieve this
by making as few assumptions as possible.

82



Figure 3. Output in MaxMSP.

While programs such as Finale or Sibelius are powerful
tools, they are focused on editing music notation, not com-
posing music. To do the latter, there are alternatives such
as the Bach Library [1] for MaxMSP [2], OpenMusic [3],
MaxScore [4], SPEAR [5], among others. Additionally, a
similar concept was adopted by Hyperscore [6].

While SPEAR also deals with graphics to create sonori-
ties, it is centered on spectral analysis of pre-existing sound
files. In Hyperscore’s case, it gave its users visual repre-
sentation of music parameters to create music. Arguably,
Hyperscore interpreted graphical notation. In contrast,
Xnk parses graphical notation.

2.4 Current Limitations

At the current stage of development, Xnk has the following
limitations:

• Only accepts .PNG images as inputs.

• MIDI Velocity is arbitrarily decided, not deducted

• The dependance on external graphic editors to cre-
ate scores and parts does not allow Xnk to natively
do graphic edits to the .PNG images. Furthermore,
Xnk’s relies on MaxMSP for further processing,
playback, and MusicXML/MIDI export methods.

• The algorithm that extracts event data from binarized
images needs further improvement.

• Not able to recognize glissandos as individual
events. They are interpreted as sequences of events.

• Extreme sensitivity creates a substantial amount of
redundant data.

2.5 Future Development

Currently, there are four main priorities for future develop-
ment. In order of importance, they are:

• Create a native graphic notation editor.
• Improve the event extraction algorithm.
• Create a native playback engine.
• Create a native music notation editor.

2.5.1 Native Graphic Notation Editor

Developing a Native Graphic Notation Editor will be a
huge step forward in Xnk’s development. This will en-
hance the Xnk’s workflow by eliminating the need to con-
stantly alternate between Xnk and the user’s graphic editor

of his choice. Rather, the user will be able to make edits
directly in the Xnk environment.

Developing this feature will prepare the path for in-depth
user defined MIDI velocity handling as well as Computer
Assisted composition AI algorithms.

In its current state, Xnk has a graphic editor that is at an
early stage of development. The current challenge with
the editor environment within Xnk is that it needs to be
able to expand horizontally towards positive x infinitely
while, at the same time, supporting infinite zoom. This
is currently being done by treating graphics as vectors in a
similar way in which Adobe’s Illustrator [7] or TopHatch’s
Concepts [8] do it.

Once the previously discussed features of the editor envi-
ronment are developed, specific graphic editing in the con-
text of Xnk’s goals will be created.

2.5.2 Native Playback Engine

Playback engines are indispensable for music software. As
mentioned before, Xnk currently relies on MaxMSP to
handle playback. Developing a Native Playback Engine
will improve Xnk’s functionality, practicality and work-
flow.

This playback engine must be powerful, scalable, poly-
phonic, and microtonal friendly in nature. One of the cur-
rent questions is whether to use MIDI.

The MIDI protocol was not designed to natively work
with microtones. While there are ways around that, they
can be unpractical in their application and decrease the
overall power of the playback engine. The most appealing
solution would be to create a native Xnk’s playback pro-
tocol that would allow for polyphonic microtonality with-
out relying on workarounds. In addition to being able to
handle microtonality natively, this theoretical new proto-
col must be able to be translated into commonplace formats
and protocols such as MIDI or MusicXml.

2.5.3 Native Music Notation Editor

The creation of a Native Music Notation Editor will make
Xnk an powerful and versatile music composition pro-
gram.

One of the most important and challenging aspects of de-
veloping this music editor will be implementing the logic
behind rhythmic quantizing tools.

Contrasting Xnk editor with the ones present in main-
stream music editors, Xnk will be composition focused

83



Figure 4. Hands2MIDIChannels raw input video.

rather than engraving focused. The goal of Xnk is to pro-
vide its users with a flexible and dynamic composition en-
vironment.

2.6 Closing Thoughts

Xnk is not intended to replace industry-standard music ed-
itors. In the case of Finale [9] and Sibelius [10], they are
both powerful computer engraving programs. However,
they lack the degree of flexibility and functionality needed
for a pure composition software.

Ideally, Xnk will become an intermediate step between
music sketching and a finalized score.

3. HANDS2MIDICHANNELS

3.1 Overview

Hands2MIDIChannels is a python script capable of rout-
ing MIDI events to specific channels based on the hand
that triggered the event. This is done by cross-referencing
the original MIDI file with a video that captured the per-
former’s hand movements over the keyboard.

It takes a MIDI file and a corresponding video as in-
puts. After the video file passes through a number of
pre-processing steps, it is manually synchronized with
the video recording. This is done so that Hands2MIDI-
Channels knows the specific moment in which a MIDI
event is triggered in the corresponding video.

At this point, further pre-processing steps take place
in preparation for the cross-reference stage. During the
cross-reference, Hands2MIDIChannels iterates through
the events on the MIDI file as shown in the video and cal-
culates which hand most likely triggered the iterated event.

After Hands2MIDIChannels assigns a hand to every
relevant event in the MIDI file, it creates a new MIDI file
where the events are routed to specific channels based on
the hand that triggered the event.

Link: Video of Hands2MIDIChannels demonstration

3.2 Detailed Explanation

Hands2MIDIChannels uses the following Python libraries:
OpenCV2, Numpy, Mediapipe, MIDO, Pillow, and
TQDM.

3.2.1 Initial Video Preparation

The goal of the Initial Video Preparation stage is to make
the video recording as computer-vision analysis-friendly
as possible. At the end of this stage, Hands2MIDIChannels
obtains a video where the area of interest shows the key-
board as a perfect rectangle. This makes further processing
straightforward.

1. Store Input Paths

• Hands2MIDIChannels stores the paths for the
MIDI and the corresponding video file.

2. Initial Video Crop

• User defines the overall area of interest that
clearly shows the performer’s hands as well as the
keyboard using an interactive interface. See Fig.
4 and 5.

3. Set Keyboard Top Bound

• User defines the keyboard top bound using an in-
teractive interface.

84

https://youtu.be/tza1F8tcBYs?si=60c_gtZaffiivYvB


Figure 5. Hands2MIDIChannels input cropped video focusing on the area of interest.

Figure 6. Hands2MIDIChannels input video after pre-processing and transformation.

4. Set Keyboard Bottom Bound

• User defines the keyboard bottom bound using an
interactive interface.

5. Keyboard Bound Calculation

• Hands2MIDIChannels uses the previously gath-
ered information to calculate the side bounds of
the keyboard.

6. Hand Bounds Calculation

• Hands2MIDIChannels calculates the hand
bounds in respect to the keyboard bounds.

7. Calculate 2D Transformation Matrix

• To account for image distortion commonly cre-
ated by lenses, Hands2MIDIChannels calculates
a 2-dimensional transformation matrix that will
make the keyboard top and bottom bounds be as
parallel as possible over the x-axis. See Fig. 6.

8. Set Y Levels for Black and White Keys

• User defines the bottom bounds for both: the
black and white keys. Note that thanks to the pre-
vious 2D Transformational Matrix, this bound is
parallel to the x-axis.

3.2.2 Video-MIDI Synchronization

Synchronizing video and MIDI as well as abstracting the
individual onsets for each MIDI event is important because
this will help Hands2MIDIChannels locate the exact place
in time on the video where an inquired MIDI event takes
place.

1. Set Sync Onsets

• User inputs the first and the last onset of events in
the MIDI file as they are shown in the video.

2. Individual Onset Calculation

• By using the first and last onset, Hands2MIDI-
Channels calculates the individual place in time
where a MIDI event is shown at the video.

3.2.3 Final Preparations

During the Final Preparations Stage, Hands2MIDI-
Channels calculates the contours corresponding to every
piano key. Then, the user is presented with an interactive
interface that allows finetuning the contours. These con-
tours will be used in the Cross-referencing Stage that fol-
lows.

1. Hands2MIDIChannels creates an approximation of the
contours corresponding to every individual white and
black keys.

2. The user adjusts the contours so that they accurately
represent the keyboard as shown in the video.

• Because the video is transformed by a 2-
Dimensional Matrix, the keys in the keyboard
tend to have slightly different widths. Modifying
the contours’ placement over the x-axis accounts
and corrects for this.

3. The final keyboard’ keys contours are created. MIDI
note information is attached.

3.2.4 Cross-Referencing

During the cross-referencing stage, Hands2MIDIChannels
iterates through the MIDI events and their corresponding
onsets in the video. It calculates which hand most likely
triggered the iterated event. See Fig. 7. For each MIDI
Event:

• Get MIDI note number.

85



Figure 7. Hands2MIDIChannels recognizing hand data from a still frame. Inquired MIDI event is highlighted in green.

• Get video onset.
• Get keyboard key contour corresponding to the in-

quired MIDI note number.
• Load the inquired video onset as an image.
• Calculate which hand most likely triggered the

event.
• Store result.

Hands2MIDIChannels uses logical gates to determine if
a note was played with the right or left hand. Currently
there are 4 stages in determining the guess. If the algorithm
arrives to a guess at any stage, it skips the remaining stages.

The stages are:

• Check if no hands are detected in the video. In this
case, Hands2MIDIChannels routes the event to an
excluded MIDI channel. This stage is often triggered
by a low frame rate video input or by Mediapipe fail-
ing to recognize hand information.

• Check if there is only one hand detected in the video.
In this case, Hands2MIDIChannels assigns the de-
tected hand as the hand that triggered the inquired
MIDI event.

• Check if there is a hand located inside the inquired
key contour area (that was calculated in the Final
Preparations stage of the program). If this case is
True, the guess will be the hand that is inside the
inquired key area.

• Calculates the hand closest the inquired key area.
This is the last resource. In this case, the guess is
the hand closest to the inquired key area.

3.2.5 Create Output

In the Create Output stage, Hands2MIDIChannels creates
a new MIDI file where the events are routed to specific
channels based on the hand that triggered the event. This
is done by duplicating the original MIDI file and updating
the channel attribute for the MIDI events. See Fig. 8.

3.3 Justification

Creating a legible piano score from a MIDI recording is
a laborious task. This is because most DAWs and music
editors record MIDI events to a single channel by default.
This in turn routes all events to a single music staff. To fix

this, there are two common solutions that industry standard
software present: manual channel assignation or arbitrary
choice of split point.

The manual channel assignation method involves the user
changing the MIDI channel for each MIDI event manually.
This can be a practical solution for short recordings but it
can quickly become an enormous task when dealing with
larger durations.

The second method, arbitrary choice of split point, in-
volves the user selecting a note as the split point. The
notes below the split point will be routed to an individual
MIDI channel while the notes above the split point will be
routed to another MIDI channel. For simple purposes, this
works great. However, for contemporary music and im-
provisations, this method does not work since there isn’t a
constant split point most of the time.

Hands2MIDIChannels offers an alternate solution that
strives to involve minimal user input and improve effi-
ciency. At the same time, Hands2MIDIChannels opens the
door for accessibility capabilities. Blind improvisers and
composers will be particularly benefited by this program
since it drastically decreases the need for external inter-
vention.

3.4 Current Limitations

Hands2MIDIChannels aims to decrease user involvement,
however, it still relies heavily on it. Additionally, process-
ing speed has room for improvement. While it remains
faster than any other method, processing times for long
files (28000+ events) is around 2:30:00 (hr:mn:sc). Fur-
thermore, Hands2MIDIChannels only works with MIDI
keyboards. It does not support acoustic instruments.

Finally, the guess accuracy has room for improvement.
Errors created by Mediapipe not recognizing hand land-
mark information or a slight synchronization error in the
video create inaccurate guesses.

3.5 Future Developments

Future developments for Hands2MIDIChannels aim to
achieve the following:

1. Improve the hand-guess algorithm.
2. Support acoustic pianos recordings.
3. Improve time efficiency.
4. Decrease user intervention as much as possible.

86



Figure 8. Before and after Hands2MIDIChannels processing comparison. MIDI channels are represented by colors.

To improve the hand-guess algorithm in the future, it
would be useful to create a machine learning model from
scratch that specializes in recognizing hand information
from a frame. Another possible option would be to add ad-
ditional steps in the video pre-process stage with the goal
of making the visual material as compatible as possible
with Mediapipe. Yet another possible path is to implement
a function that will audit the guesses and calculate their ac-
curacy. Based on this probability, the function will be able
to correct the guesses if they need it.

Supporting acoustic pianos video recordings as a sin-
gular input for Hands2MIDIChannels is a challenge, yet
it is a theoretically possible challenge. By abstracting
pitch information from the recorded signal using Fast
Fourier transformations, comparing it to the correspond-
ing video frame, then having a machine learning model
recognize the hand data in that frame, and finally, output
an accurate MIDI file with events sorted in two channels,
Hands2MIDIChannels would be able to support acoustic
piano video recordings.

To improve time efficiency, the code needs to be reor-
ganized, translated to C++, and designed to decrease user
involvement as much as possible. Hands2MIDIChannels
aims to be a efficient tool that is able to save its users’
time by automating the hand assignation process as much
as possible

3.6 Closing Thoughts

Hands2MIDIChannels gives its users a time-efficient tool
that allows them to improvise/compose freely at the key-
board with the certainty that they will have access to a or-
ganized MIDI file ready for time quantization. Because
of its nature, Hands2MIDIChannels thrives as both: as a

standalone software, and as an external function capable
of interacting with existing DAWs and music editors.

Finally, Hands2MIDIChannels is of particular help for
blind composers and improvisers.

4. CONCLUSION

This paper introduces two novel software tools indepen-
dently developed by the author, offering innovative solu-
tions for optimizing creative workflows in music composi-
tion and improvisation.

Addressing specific challenges overlooked by current in-
dustry-standard software, Xnk presents a deterministic,
reliable, and scalable framework for the translation of
graphic elements into traditional music notation. Con-
versely, Hands 2MIDIChannels streamlines the hand assig-
nation process for keyboard instrument recordings.

Beyond their technical advantages, both tools contribute
to unparalleled accessibility solutions, catering to individ-
uals with disabilities. Moreover, they play a pivotal role
in democratizing the music creation process, extending its
reach to a broader and more diverse population.

In summary, these tools not only advance the field of dig-
ital music notation and transcription but also have the po-
tential to significantly impact accessibility and inclusivity
within the realm of music creation, marking a noteworthy
stride towards a more universally accessible and democra-
tized musical landscape.

Acknowledgments

I would like to extend my heartfelt thanks to Stella Gitel-
man Willoughby, whose unwavering support and insight-
ful advice have been instrumental throughout the course of

87



this project. Special appreciation is also due to my MA ad-
visor, John McDonald, whose artistry, encouragement, and
deeply inspiring conversations are shaping my academic
journey at Tufts.

Furthermore, I am grateful to Melinda Latour, PhD, for
her meticulous proofreading of the paper, enhancing its
clarity and precision.

Lastly, I wish to express my sincere appreciation to the
Tufts Music Department Graduate program for their in-
valuable financial assistance.

5. REFERENCES

[1] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Com-
puter music journal, vol. 39, no. 2, pp. 11–27, 2015.

[2] Cycling’74, “Max.” [Online]. Available: https://
cycling74.com/products/max

[3] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer-Assisted Composition at IR-
CAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, pp. 59–72, 1999.

[4] G. Hajdu and N. Didkovsky, “MaxScore: Recent De-
velopments,” in Proceedings of the International Con-
ference on Technologies for Music Notation and Rep-
resentation – TENOR’18, S. Bhagwati and J. Bresson,
Eds. Montreal, Canada: Concordia University, 2018,
pp. 138–146.

[5] M. Klingbeil, “Software for spectral analysis, editing,
and synthesis,” in International Computer Music Asso-
ciation, vol. 2005, 2005.

[6] M. M. Farbood and E. Pasztor, “Hyperscore graphics
software package,” 2004.

[7] Adobe Inc., “Adobe illustrator.” [Online]. Available:
https://adobe.com/products/illustrator

[8] Tophatch Inc., “Concepts.” [Online]. Available: https:
//concepts.app/en/

[9] MakeMusic Inc., “Finale.” [Online]. Available: https:
//www.finalemusic.com/

[10] Avid Technology Inc., “Sibelius.” [Online]. Available:
https://www.avid.com/sibelius

88

https://cycling74.com/products/max
https://cycling74.com/products/max
https://adobe.com/products/illustrator
https://concepts.app/en/
https://concepts.app/en/
https://www.finalemusic.com/
https://www.finalemusic.com/
https://www.avid.com/sibelius

	 1. Introduction
	 2. XNK
	2.1 Overview
	2.2 Detailed Explanation
	2.2.1 Preparing the .PNG Images
	2.2.2 User-Defined Parameters
	2.2.3 Pre-Processing Preparation
	2.2.4 Image Processing
	2.2.5 Event and Voice Sorting
	2.2.6 Pitch and Time Mapping
	2.2.7 Data to Bach’s llll Conversion
	2.2.8 Opening in MaxMSP

	2.3 Justification
	2.4 Current Limitations
	2.5 Future Development
	2.5.1 Native Graphic Notation Editor
	2.5.2 Native Playback Engine
	2.5.3 Native Music Notation Editor

	2.6 Closing Thoughts

	 3. Hands2MIDIChannels
	3.1 Overview
	3.2 Detailed Explanation
	3.2.1 Initial Video Preparation
	3.2.2 Video-MIDI Synchronization
	3.2.3 Final Preparations
	3.2.4 Cross-Referencing
	3.2.5 Create Output

	3.3 Justification
	3.4 Current Limitations
	3.5 Future Developments
	3.6 Closing Thoughts

	 4. Conclusion
	 5. References



