MUSASSIST: A DOMAIN SPECIFIC LANGUAGE FOR MUSIC NOTATION

Ilana Shapiro
Pomona College
Claremont, USA
issa2018@mymail.pomona.edu

ABSTRACT

MusAssist is an external, declarative, domain specific lan-
guage for music notation that bridges the abstraction gap
between Western music theory and composition. Users
can describe unique high-level templates for chords and
arpeggios (all triads and seventh chords), scales (diatonic,
chromatic, and whole tone), the five primary cadences, and
the four primary harmonic sequences with desired length.
Distinctively, MusAssist matches the level of abstraction
of a template to the theoretical musical structure it de-
scribes (e.g. users can specify a harmonic sequence with-
out needing to manually expand it to the chords and notes
it comprises). Thus, users can write out specifications pre-
cisely at the conceptual levels of the musical structures
they would organically conceive when composing by hand.
In MusAssist, users can also change key signatures, start a
new measure, and describe fundamental musical objects
such as notes, rests, and customized chords. The Haskell-
based MusAssist compiler expands high-level templates
(thus lowering the level of abstraction to individual notes)
and translates the program to MusicXML, a language ac-
cepted by most major music notation software, for further
manual editing and playback.

1. INTRODUCTION

When writing music in the framework of Western music
theory, composers manually transition from theoretical mu-
sical concepts to notes on a page. This process can be slow
and tedious, requiring the composer to expand complex
musical structures by hand, such as cadences and harmonic
sequences, to the individual notes they define. Therefore,
the level of abstraction of the musical structure is higher
than what the composer writes.

Domain specific languages (DSLs) are programming lan-
guages highly specialized for a specific application and
thus characterized by limited expressiveness. An external
DSL has custom syntax that is separated from the primary
language of its application.

This paper presents MusAssist, an external, declarative
DSL for music notation that bridges the abstraction divide
between Western music theory and notation. Users de-
scribe a composition in MusAssist’s straightforward, high-

Copyright: © 2023 Ilana Shapiro. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

76

level syntax, modeled around the musical elements com-
posers organically conceive when writing by hand, and the
MusAssist compiler automates the expansion of these el-
ements to their constituent notes. MusAssist’s declarative
programming paradigm was chosen to correspond with the
lack of control structures in handwritten music.

MusAssist is unique in that users can encode specifica-
tions for complex musical templates at the same level of
abstraction as the theoretical musical structures they de-
scribe. Specifically, users can specify high-level templates
for chords and arpeggios (major, minor, dominant, aug-
mented, half diminished, and diminished triads and sev-
enth chords in any inversion), scales (major, natural/harm-
onic/melodic minor, chromatic, and whole tone), cadences
(perfect authentic, imperfect authentic, plagal, half, de-
ceptive), and harmonic sequences (ascending fifths, de-
scending fifths, ascending 5-6, descending 5-6) of a desired
length. MusAssist also supports individual notes, rests,
and customized chords consisting of user-defined collec-
tions of notes and enables the user to change the key sig-
nature or start a new measure. All high-level templates are
expanded, lowering the abstraction level to notes, by the
Haskell-based MusAssist compiler.

The target language of the MusAssist compiler is Mu-
sicXML, itself a DSL that is an extension of XML (Ex-
tensible Markup Language). MusicXML is accepted by
most major notation software, such as MuseScore. Thus,
users can open the resulting MusicXML file of a compiled
MusAssist composition in MuseScore or another program
for further customization, editing, and playback. MusAs-
sist thus serves as a professional music compositional aid,
filling in an integral part in the composition process where
Western composers must make the transition from the the-
oretical, high-level musical framework with which they de-
scribe their piece to the notes that these structures consti-
tute. The subsequent ability of users to manually edit the
compiled MusAssist composition speaks to MusAssist’s
present role as an assistant in the creative process, rather
than a fully expressive means of music creation. MusAssist
may also be particularly helpful to Western music theory
students as an educational tool, enabling them to visual-
ize the relationship between a Western theoretical musical
structure and its expanded form, such as in conceptualizing
the chords resulting from the expansion of a cadence.

This paper first summarizes related work in music no-
tation DSLs. Then, features of the MusAssist language
are outlined, followed by the presentation of a use case.
Finally, the MusAssist compiler structure and the central
logic behind its automated template expansions are described.

mailto:issa2018@mymail.pomona.edu
http://creativecommons.org/licenses/by/3.0/

2. RELATED WORK

The era of music programming languages began in 1957
with Max Mathews’ MUSIC-N languages at Bell Labs, de-
veloped on individual IBM mainframes. The first of these
languages, Music I, generated a single, equilateral, triangu-
lar waveform with identical rise and decay characteristics.
It was capable of playing only melody: the user specified
pitch, amplitude, and duration for individual notes. Music
II supported four independent voices of sound and a choice
of 16 waveforms, and Music III introduced the concept of
the unit-generator, the building block for sound synthe-
sis programming languages that corresponds to the func-
tions of analog synthesizers. Music IV was a more compu-
tationally sophisticated version of Music III, and machine
independence was finally reached in 1966 with Music V,
which became the first publicly distributed music program-
ming language [1].

Since then, computer scientists have taken advantage of
the increased flexibility afforded to DSLs via their lim-
ited expressiveness to create music DSLs tailored towards
notation, algorithmic composition, sound synthesis, live
coding with music performance, and more. Aside from
MusAssist, MusicXML, LilyPond, and PyTabs are com-
monly used music DSLs also specializing in notation.

Michael Good’s MusicXML is an Internet-friendly, XML-
based, declarative DSL that represents standard Western
music notation and scoring practices. Similar to how the
popular MIDI format helped create a standardized format
for electronic instruments, MusicXML provides a standard-
ized format for online sheet music to create a consistent
method for representing complex, structured musical data.
MusicXML thus introduces smooth interchange between
musical applications specializing in notation, performance,
analysis, music information retrieval, and more [2].

To achieve this, Good derives MusicXML from XML due
to its Internet-friendly nature, straightforward use in doc-
ument creation, and human readability. In contrast, MIDI
is very difficult to read and write, and is also less powerful
and expressive than XML [3].

MusicXML is more expressive than MusAssist, but the
abstraction level of all musical elements is extremely low
(i.e. chords must be written out as individual notes) and
though easily readable, its syntax is cumbersome and te-
dious to write by hand. However, its enhanced expres-
siveness makes MusicXML an excellent target compilation
language for MusAssist’s user-friendly syntax and high-
level Western theoretical musical templates.

LilyPond, an external, declarative DSL created by Han-
Wen Nienhuys and Jan Nieuwenhuizen, is similar to MusAs-
sist. It features a “modular, extensible and programmable
compiler” written in Scheme to generate Western music
notation of excellent quality, and supports the mixing of
text and music elements. Text-based musical expressions,
or fragments of music with set durations, are compiled to
an aesthetically formatted score [4].

LilyPond and MusAssist are both music notation DSLs
tailored to non-programming audiences. However, they
differ in two fundamental areas: (1) MusAssist supports
complex music templates at the levels of abstraction of

77

the musical structures they represent, whereas LilyPond
only supports granular, low level composition of individ-
ual notes and chords, and (2) the output of the MusAssist
compiler is intentionally editable via notation software, un-
like LilyPond’s compiler, which produces a static, print-
able PostScript or PDF file by taking in a file with a formal
representation of the desired music [4].

Simic et al.’s external, declarative DSL PyTabs is also
geared toward music notation, but in a different domain
than MusAssist. Specifically, the authors attempt to solve
the visual problem of tablature notation and the lack of
standardization in specifying tablature-based note durations
by consolidating these issues into a formal language. How-
ever, tablature notation is outside the scope of MusAssist’s
text-based Western theoretical musical structures [5].

3. LANGUAGE FEATURES
3.1 Low-Level Fundamentals

On the most basic level, MusAssist supports individual
rests and notes. Rests are given a duration from sixteenth to
whole note, and notes are further defined by note name (A
to G), accidental (double flat to double sharp), and octave
(1 to 8, after the range of a piano). Just as in traditional
Western notation, the absence of an accidental indicates
natural quality. Users can also define customized chords,
or user-defined lists of individual notes. These are not con-
sidered templates as the high-level description of the chord
is not given, and the granularity is at the note level.

3.2 High-Level Templates

MusAssist supports templates for chords, arpeggios, scales,
cadences, and harmonic sequences, specified uniquely at
the abstraction levels of the Western theoretical musical
structures they represent.

Following the principles of Western music theory, chords
are specified by their root note, quality (major, minor, aug-
mented, dominant, diminished, or half diminished), inver-
sion (root, first, second, or third), and chord type (triad
or seventh). Half diminished, dominant, and third inver-
sion options can only apply to seventh chords. The root
note cannot have a double accidental, as this can introduce
triple accidentals in the chord, which MusAssist does not
support.

Arpeggios are defined with a similar specification to Mus-
Assist chords, since according to Western music theory, an
arpeggio is simply the notes of a chord played individually
in sequence. However, unlike with chords, for arpeggios
the user also supplies direction (ascending or descending).

Diatonic scales are given by scale type (major or natu-
ral/harmonic/melodic minor) and key, while non-diatonic
scales are simply specified by their type (chromatic or whole
tone). A scale is either ascending or descending, must be
given a length, and does not necessarily begin on the tonic
— a start note must be supplied. Following convention,
chromatic scales are notated with sharps when ascending
and flats when descending.

Cadences are specified by cadence type (perfect/imperfect
authentic, half, plagal, or deceptive) and key.

Currently, MusAssist only supports a single treble clef
line. Thus, cadences are written out in the upper voices
only, in keyboard voice leading style, and incorporating
principles of smooth voice leading.

Based on the principles of Western functional harmony,
there are several ways to represent a cadence. In MusAs-
sist, the representations in Table 1 were chosen. In each
row of Table 1, the major version is presented first, with
the minor version following in parentheses.

Perfect Authentic IV-V-I (iv-V-i)

. 08 66 .6
Imperfect Authentic | IV-vii®4-14 (iv-vii®4-i4)

Plagal IVi-I (ivi-I)
Deceptive IV-Vi-vii (iv-Vi-VI1)
Half TIV-ii8-V (iv-ii®6-V)

Table 1: MusAssist Cadences Summary

All cadences except perfect authentic are built exclusively
with triads. Although MusAssist does not currently sup-
port a bass line, in order to simulate the requisite 4-5-1
bass line for perfect authentic cadences, the root in the fi-
nal chord is doubled. This also allows for the uppermost
voice to follow the requisite 2-1 downward step in the final
two chords of the cadence without compromising the root
position of the final chord. The perfect authentic cadence
is demonstrated in Figure 1, produced with the MusAssist
syntax (Perfect Authentic Cadence, EDbS
minor, sixteenth) compiled and loaded into Mus-
eScore notation software.

Figure 1: Perfect Authentic Cadence in Eb minor

Finally, harmonic sequences are specified by harmonic
sequence type (ascending fifths, descending fifths, ascend-
ing 5-6, or descending 5-6), key, duration of each chord,
and length of the sequence. Since MusAssist does not yet
support multi-line composition, harmonic sequences are
written like cadences in keyboard-style voice leading.

In Western music theory, harmonic sequences can be im-
plemented in several ways depending on the desired inver-
sion scheme. Though the upper-voice harmonization of a
harmonic sequence need not follow the direction in the se-
quence’s name, MusAssist chooses a chord inversion and
voice leading pattern such that each sequence does so. For
instance, the Ascending Fifths sequence will ascend, and
the Descending 5-6 sequence will descend. Each pattern
also maximizes smooth voice leading.

The chosen patterns for each MusAssist sequence are sum-
marized in Table 2. All sequences are shown in major in
this demonstration, but their minor counterparts are also

supported. Each sequence consists of fourteen distinct chords

before repeating in the subsequent octave.

14 v ii4 vi iii4
Ascending Fifths | vii® vi 1 Vi ii
R s -
vi4 iii vii®a IV
6 .. 6
I V4 vii® iii4 vi
Descending Fifths iid \% Is v Vi
e e Rt
iii vi4 ii Va
I vi® ii vii®® i
Ascending 5-6 16 v ii® A iii®
vi v vii® \%&
6 6 6

Descending 5-6

Table 2: MusAssist Harmonic Sequences Summary

3.3 Additional Features

Beyond compositional elements, users can set the key sig-
nature at the start of any measure up to seven sharps or flats
by specifying note name, accidental, and quality (sharp or
flat). Users can also start a new measure or create a blank
measure. Finally, users can assign MusAssist expressions
to string labels and reuse them later in the program (the
labels are syntactic sugar for the expressions). MusAssist
comments are designated with the double slash / /.

The tempo for all MusAssist programs is set to J = 80
BPM and cannot currently be changed. This also applies
to the time signature, which is set to j{.

All compiled MusAssist programs adhere to standard no-
tation conventions. Notes and rests are broken over bar-
lines as well as over the strong beat (beat three) of the
measure. They are divided greedily into valid rhythmic
units (from sixteenth to whole note) ordered either least to
greatest, or greatest to least in the case of spillage of a tied
note over the barline into the following measure.

4. SAMPLE PROGRAM

The full breadth of MusAssist’s syntax is demonstrated in
Figure 2, and Figure 3 presents the resulting compiled Mu-
sicXML code when opened in MuseScore.

Several features of MusAssist are clarified in Figures 2
and 3:

» The key signature can be changed consecutively as
many times as desired, but only the last will take
effect (as seen m. 1 and m. 5 of Figure 3). Changing
the key signature also triggers a new measure.

* Empty measures can be created by consecutively ap-
plying the NEW_MEASURE command (as seen m. 3
of Figure 3).

* Note and rest durations are automatically broken by
the compiler both on the strong beat and on the bar-
line (such as in mm. 1-2 of Figure 3). However, fol-
lowing standard Western notation convention, notes
and rests that begin on a beat and fit in the remain-
der of the measure are not broken on the strong beat
(such as in m. 9 of Figure 3).

 Labeled phrases are not notated until the label is ref-
erenced, rather than defined.

e The difference between a customized chord and a
chord template is exemplified on lines 7 and 11 of
Figure 2.

Figure 2: MusAssist Syntax

Figure 3: Compiled MusAssist Program in MuseScore

S. COMPILER STRUCTURE

The MusAssist compiler is written in Haskell. Its high-
level structure is as follows:

1. MusAssist’s concrete syntax is parsed into abstract
syntax, represented as Haskell algebraic data types
(ADTs). Parser combinators were chosen for their
flexibility and ease of customization. Parsec, an in-
dustrial strength parser library, is used, and Parsec’s
helper module Token handles lexing. The parse pre-
serves the abstraction level of all templates.

2. All templates, now represented as ADTs, are ex-
panded using the logic in Section 6 until the gran-
ularity reaches the note level. The result of this in-
termediate stage is abstract syntax whose abstrac-
tion level matches that of the target language, Mu-
sicXML.

3. The low-level abstract syntax resulting from the fully
expanded templates is translated to MusicXML. This
step contains the temporal logic that subdivides notes
and rests across barlines and strong beats.

79

The resulting MusicXML file can then be opened in stan-
dard music notation software like MuseScore for viewing,
further editing, and playback.

6. TEMPLATE EXPANSION LOGIC

MusAssist’s distinguishing feature is its ability to automate
the expansions of Western theoretical musical templates
given user-supplied specifications at a higher level of ab-
straction. The logic underlying the expansions is summa-
rized below.

6.1 Backbone Logic
6.1.1 Generating Notes in a Diatonic Scale

Most MusAssist templates are built upon the diatonic scale.
To automate the expansions of these templates, we must
first be able to generate a note in a desired diatonic scale
given a positive interval within one octave of the speci-
fied tonic. Recall that a MusAssist note is defined by note
name, octave, and accidental. Given the target interval
n, to determine the note name we begin at the tonic and
travel n steps up MusAssist’s custom Haskell ADT for note
names, a circular Enum instance ordered as the C major
scale is.

The desired octave is either the same as that of the tonic,
or one greater if the desired note name (disregarding acci-
dental) comes before the tonic note name in the C major
scale. For instance, as seen in Figure 4, the red note names
D, E, and F come before G in the C major scale, and the
octave number of each is one higher than the tonic in a G
major scale.

Figure 4: Octave Analysis of G Major Scale

To determine the desired accidental, first realize that in
any key, a perfect interval will generally have the same ac-
cidental as the tonic, with two exceptions: the perfect fifth
above B is Fg, and the perfect fourth above F is Bb. To
work out the logic behind the accidental of a desired im-
perfect interval, consider Figure 5. Here, we enumerate all
single-accidental key signature names (even invalid ones
that contain double sharps or flats) in order to establish the
pattern. Key signature names are grouped under the acci-
dental of the note that is the desired interval from the tonic.
For instance, in the key of Ab , the major second interval
from the tonic is Bb. The accidental of Bb is b, so Ab falls
under the b column in Figure 5.

Major Seconds|
b i # =
Fb Eb E E#
Cb Bb B B#
Gb F F#
Db C c#
Ab G G#

D D#

A A#

Figure 5: Accidental of Major Second from Tonic per Key

From Figure 5 we see that given any key, the major sec-
ond above the tonic has the same accidental as the tonic,
except for any key with E or B in its name. In these keys,
the accidental is “lifted” (i.e. b— &, §— 4, and §— x).

A similar pattern emerges for minor thirds, major sixths,
and minor sevenths from the tonic. Using the result of
this analysis, we can determine the accidentals of the in-
verse qualities (i.e. major versus minor) of the imperfect
intervals by either lowering the computed accidental when
going from major to minor, or lifting it otherwise. Aug-
mented and diminished intervals from the tonic are not
considered since they do not appear in diatonic scales.

6.1.2 Generating Chord Templates in a Diatonic Scale

Generating chord templates in a diatonic scale becomes
relevant for the expansions of the highest-level MusAssist
templates — namely, cadences and harmonic sequences —
that are defined in Western music theory by lists of chord
templates rather than notes.

The goal here is to automate the generation of chord tem-
plates for triads in a diatonic scale given a specified tonic
tone and quality for the scale (major or minor), inversion,
and positive interval within one octave of the tonic for the
chordal root. If we need to generate a chord template for a
seventh chord, we simply generate the base triad and add
the fourth note afterwards.

In order to complete the triad template definition from the
supplied information, we simply need to determine the de-
sired chord quality. Western music theory dictates that the
and the minor diatonic scale contains the triads i-ii°-1II-
iv-v-VI-VIL. Using this, we can compute the triad quality
given the tonic quality and the supplied interval between
tonic and desired chordal root.

6.2 Template Expansions
6.2.1 Scales

The expansion of all major and natural/harmonic/melodic
minor scales is derived from the logic in Section 6.1.1.
The scale is generated in relation to its tonic, rather than
the specified starting note. The tonic octave is always set
so that the tonic falls below the start note. This ensures
that the initial interval between tonic and start note is pos-
itive, with the interval then increasing for ascending scales
and decreasing for descending scales until the desired scale
length is reached. If the tonic is reached in the scale gen-
eration, we reset the tonic to be one octave higher or lower
(corresponding to scale direction) so that the interval be-
tween the next note in the scale and the current tonic is al-
ways positive and within a single octave. Finally, consider
that all minor scales are treated as natural when generating
their notes. If needed, the notes are modified afterwards in
order to appropriately raise the sixth and/or seventh scale
degree(s) for harmonic and melodic minor scales.

For the non-diatonic scales (chromatic and whole tone),
the C below the start note is set as the “tonic” in order to
determine the octave of each note in the scale generation.
As with diatonic scales, the tonic octave is appropriately

80

shifted one octave higher or lower, corresponding to scale
direction, if it is reached during the scale generation.

As seen in Figure 6, for 10 of the 12 tones, chromatic
scales “double” the note name, with the directional acci-
dental (sharp for ascending, flat for descending) falling on
the second occurrence. The two exceptions marked in red
in Figure 6 are E and B in the ascending version, and C and
F in the descending version.

Figure 6: Chromatic Scales

If we are on a single note, we simply move up the scale.
Otherwise, we repeat it and insert an accidental on the sec-
ond occurrence.

Whole tone scales are constructed with a similar model.
As seen in Figure 7, the ascending whole tone scale is
missing the note B, while the descending is missing C.

Figure 7: Whole Tone Scales

To determine the next note name, we simply traverse up
or down the C major scale, excluding the appropriate tone.
To determine the next accidental, we accordingly lift or
lower the current accidental if we reach one of the red
boundaries in Figure 7, otherwise leaving it unchanged.

6.2.2 Chords and Arpeggios

Each note in a chord or arpeggio is generated with the logic
from Section 6.1.1 based on its interval from the tonic (i.e.
the chordal root). Chordal thirds, fifths, and sevenths have
respective intervals of 2, 4, and 6 from the tonic.

The imperfect chordal intervals are initially set to major
for major, dominant, and augmented chords, and to minor
for minor, half diminished, and fully diminished chords.
Thus, after the note is generated, for augmented chords the
chordal fifth accidental must be lifted, and the seventh must
be lowered. For dominant seventh chords, the seventh must
be lowered. Finally, for diminished chords, the fifth and
seventh must be lowered, and for half diminished seventh
chords, the fifth alone must be lowered.

To handle inversions, notice that the generated chord (wh-
ether triad or seventh) starts out in root position. Let n be
the desired inversion value (O for root, 1 for first inversion,
2 for second, and 3 or third). By incrementing the octaves
of the first n tones of the chord in root position, we obtain
the correct inversion. This process is demonstrated in Fig-
ure 8 with a C dominant seventh chord in third inversion.

If we instead have an arpeggio, we first generate the notes
in the underlying chord using the above logic. If the arpeg-
gio is specified as a triad, we then double the first note of

Figure 8: Chord Inversion Analysis

the arpeggio (which is determined by the inversion) an oc-
tave higher or lower, according to the specified direction,
in order to have a complete arpeggio. For instance, a C5
major descending arpeggio in first inversion would have E6
as its first note and ES as its last note. Finally, we sort the
tones in the arpeggio so that they strictly ascend or descend
depending on the specified arpeggio direction, and return
them as a list of individual tones, rather than a simultane-
ous cluster as in a chord.

6.2.3 Cadences

A cadence must undergo two levels of expansion: an inter-
mediate step from the cadence to the list of chord templates
it defines, and a final step from chord templates to notes.

Recall that the chosen chords for each MusAssist cadence
are defined in Table 1, which reveal the interval of each
chordal root from the tonic. Using this, for each chord in
the cadence, we first employ the logic from Section 6.1.1
to generate the root note of each chord. Then, we use the
logic in Section 6.1.2 to generate a template for each chord,
which then undergoes a second expansion in Section 6.2.2.

The scale quality supplied for the chord template genera-
tion in Section 6.1.2 is generally that of the cadence. How-
ever, there are exceptions. All V chord templates are gen-
erated within a major scale, no matter the cadence quality,
since cadences always have major V chords. Similarly, we
want the seventh triad in the imperfect authentic cadence to
be diminished —i.e. built on the major seventh scale degree
— no matter the local key quality, since we raise the leading
tone in minor keys when moving towards the tonic. Thus,
this chord template must also be generated within a major
scale in Section 6.1.2.

The tonic octave supplied to Section 6.1.2 is also usually
that of the cadence. However, in order for the cadences to
follow smooth voice leading, the tonic octave must be low-
ered once in relation to the specified cadence octave when
generating second inversion triads, which appear in all ca-
dences except perfect authentic. This is demonstrated in
the B major deceptive cadence in Figure 9. After convert-
ing to root position for clarity, note that the chordal root in
the cadence octave is in blue and the roots an octave below
(i.e. those of the second inversion triads) are in red.

Figure 9: Deceptive Cadence Octave Analysis

6.2.4 Harmonic Sequences

Like cadences, harmonic sequences are initially expanded
to the chord templates they comprise, which then undergo a
second expansion to notes. Recall from Figure 2 that each

sequence consists of 14 chords, after which it cycles an
octave above or below, depending on the direction of the
sequence.

In order to generate chord templates for a sequence, we
need to determine:

1. The interval between each pair of chordal roots, which
dictates how to proceed from one chord to the next
in the sequence

2. The inversion of each chord

3. The octave number of each chord (given by the chordal
root octave) relative to the tonic

To determine (1) and (2), consider the analysis in Figure 10,
which determines the interval pattern for the chordal roots
of the descending 5-6 sequence (as defined previously in
Figure 2), given the zero-based index of each chord in the
sequence.

Figure 10: Descending 5-6 Interval Analysis

The top row of Figure 10 is the chord index, the second
row is the chord progression from Table 2, the third row is
the interval between each chordal root and the tonic, and
the bottom row is the interval between each chordal root
and the previous (modulo 7). A clear pattern for inversions
(in the second row) and interval changes (in the fourth row)
emerges based on the parity of the index. Identical anal-
yses are applied to the remaining sequences to formalize
their interval and inversion patterns.

Finally, we need to determine (3), the octave number of
each chordal root relative to the tonic, or the root of the first
chord in the sequence. Consider Figure 11, which presents
an octave analysis for the descending 5-6 sequence.

Figure 11: Descending 5-6 Octave Analysis

In Figure 11, all chords are converted to root position in
order to visualize the octave numbers of their roots in re-
lation to the tonic. The chordal roots in blue are an octave
number above the tonic, the roots in yellow are an octave
below, and the root in red is two octaves below. This same
analysis is applied to determine the octave numbers of the
chords in the remaining sequences.

Importantly, the interval analysis in Figure 10 holds for
any representation of a harmonic sequence, as this is what
defines the theoretical musical structure. However, the in-
version and octave analyses in Figures 10 and 11 hold only
for MusAssist’s chosen representation of the sequences in
Table 2, as a different inversion scheme would alter their
outcomes.

7. CONCLUSION

This paper presents MusAssist, an external, declarative DSL
for music notation that closes the abstraction gap between
Western music theory and written composition. Users can
uniquely write specifications in MusAssist’s simple and
high-level syntax for scales, chords, arpeggios, cadences,
and harmonic sequences at the precise levels of abstraction
of the Western theoretical musical structures they describe.
Fundamental musical elements such as notes, rests, cus-
tom note collections, new measures, and key signatures are
also supported, along with the ability to reuse labeled ex-
pressions and indicate comments. MusAssist programs are
translated by its Haskell-based compiler to MusicXML,
enabling the composition to be loaded into notation soft-
ware for further manual editing and playback. Thus, MusAs-
sist serves the role of a tool for Western composers to use
after they have mapped out the harmonic framework of
their piece and must realize the structures they have de-
scribed. MusAssist also has the potential to help West-
ern music theory students easily generate expanded forms
of musical structures as they learn, such as cadences, se-
quences, and scales.

Optimally, in the future MusAssist would support tem-
plates for additional non-diatonic structures like octatonic
and pentatonic scales. Templates for key modulations are
also planned, which would provide specifications that gen-
erate a sequence of chords modulating from a start key to a
target key. Furthermore, future versions of MusAssist will
allow for increased customizability of existing templates
that are not currently fully expressive. The present MusAs-
sist template expansions for cadences and harmonic se-
quences are limited to the representation schemes outlined
in Tables 1 and 2. In order for MusAssist to fully close
the abstraction gap between Western theoretical musical
structures and their low-level notational forms, all func-
tional harmonic variations should be supported. Addition-
ally, support for two-clef, multi-staff composition would
improve the implementation of cadences and harmonic se-
quences by including the essential baseline, and support
for changing meter and tempo would provide users with
increased compositional flexibility.

MusAssist would also benefit from veering beyond West-

82

ern tonal theory and into other realms such as jazz by sup-
porting all flavors of suspended, ninth, eleventh, and thir-
teen chords. Furthermore, MusAssist would ideally extend
its support for non-diatonic structures beyond those en-
countered in Western music, such as the microtonal modal
systems found in the Arabian-Persian magam, and the in-
tervallic patterns of the Indian raga. Finally, additional
user studies of MusAssist would give insight into potential
improvements for language design.

Acknowledgments

I am very grateful to Professor Ben Wiedermann of Har-
vey Mudd College for his invaluable mentorship through-
out this project.

8. REFERENCES

[1] C. Roads and M. Mathews, “Interview with max
mathews,” Computer Music Journal, vol. 4, no. 4, pp.
15-22, 1980. [Online]. Available: http://www.jstor.

org/stable/3679463
[2] M. Good, ‘“Musicxml: Introduction,” Apr
2013. [Online]. Available: https://www.

musicxml.com/publications/makemusic-recordare/
notation-and-analysis/introduction/

[3] ——, MusicXML: An Internet-Friendly Format
for Sheet Music, Dec 2001. [Online]. Avail-
able: https://michaelgood.info/publications/music/
musicxml-an-internet-friendly-format-for-sheet-music/

[4] H.-W. Nienhuys and J. Nieuwenhuizen,
Pond, A System for Automated Mu-
sic Engraving, May 2003. [Online]. Avail-
able: https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.100.6160&rep=rep 1 &type=pdf

Lily-

[5] M. Simié, Z. Bal, I. Dejanovic, and R. Vaderna,
“Pytabs: A DSL for simplified music nota-
tion,” ResearchGate, 2015. [Online]. Available:
https://www.researchgate.net/publication/312607043_

PyTabs_A_DSL _for_simplified_music_notation

http://www.jstor.org/stable/3679463
http://www.jstor.org/stable/3679463
https://www.musicxml.com/publications/makemusic-recordare/notation-and-analysis/introduction/
https://www.musicxml.com/publications/makemusic-recordare/notation-and-analysis/introduction/
https://www.musicxml.com/publications/makemusic-recordare/notation-and-analysis/introduction/
https://michaelgood.info/publications/music/musicxml-an-internet-friendly-format-for-sheet-music/
https://michaelgood.info/publications/music/musicxml-an-internet-friendly-format-for-sheet-music/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6160&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6160&rep=rep1&type=pdf
https://www.researchgate.net/publication/312607043_PyTabs_A_DSL_for_simplified_music_notation
https://www.researchgate.net/publication/312607043_PyTabs_A_DSL_for_simplified_music_notation

	2 - TENOR_BOSTON_2023_paper_5657 Nowakowski.pdf
	 1. Introduction
	 2. Method
	 3. Results
	3.1 System Usability Score (SUS)
	3.2 AttrakDiff2
	3.3 Liveness

	 4. Discussion
	4.1 Limitations and Problems
	4.2 Metrics in detail
	4.3 Correlating the results

	 5. Conclusion & Future Work
	 6. References

	3 - TENOR_BOSTON_2023_paper_5929 Loui.pdf
	ABSTRACT
	1. INTRODUCTION
	Techniques for the notation, representation, and visualization of music and sound are inextricably linked to the human understanding of musical structure within their broad contexts. These understandings include the cognitive representations that the ...
	2. Studies in Musical Creativity
	3. Challenges and Motivations Behind Present Research
	4. the BP sequencer
	5. experiment 1: sequence production task: generating creative output
	6. Experiment 2: Sequence Ratings Task: Perception of creativity
	7. Experiment 3: EEG Signatures of Creativity from BP Sequencer data
	8. CONCLUSIONS
	9. references
	Acknowledgments
	We acknowledge funding support from NIH R01AG078376, NIH R21AG075232, NSF-CAREER 1945436, and NSF 2240330 to PL. We thank lab members Anjali Asthagiri, Jethro Lee, Catherine Zhou, Kristina Abyad, Carly Monson, Ayla Hadley, Corinna Parish, Eva Wu, and ...

	4 - TENOR_BOSTON_2023_paper_8103 Frame.pdf
	 1. Background
	1.1 Documentation for Digital Musical Instruments
	1.2 The AirSticks Community

	 2. Related Work
	2.1 Prescriptive notation
	2.2 Descriptive notation
	2.3 Describing experience?

	 3. The notation system
	3.1 Overview
	3.2 Capturing AirStick experiences
	3.3 Technical process
	3.4 Case study

	 4. Discussion
	4.1 Utility of new systems
	4.2 Future work

	 5. References

	5 - TENOR_BOSTON_2023_paper_5652 Celerier.pdf
	 1. Introduction
	 2. An ossia score primer
	 3. Distributing scores
	3.1 Abstracting over hardware with groups
	3.2 Distribution of interaction
	3.3 Polyphony

	 4. Distributing data
	 5. Visual language extensions
	 6. Implementation
	 7. Distribution examples
	7.1 Sending data between machines
	7.2 Combining control data across a group of players
	7.3 Duplicating an input
	7.4 Score for SMC2022
	7.5 Polyphony, sharing and visual language

	 8. Conclusion

	6 - TENOR_BOSTON_2023_paper_4288 Privato.pdf
	 1. Introduction
	 2. Background
	2.1 Instruments-Scores and Non-visual Inscriptions
	2.2 Event Scores and Non-visual Inscriptions
	2.3 Permanent Magnets

	 3. The Magnetic Score
	3.1 Magnetic Board
	3.2 Magnetic Discs
	3.3 Sound Processing

	 4. Presenting the Magnetic Score
	 5. Discussion
	5.1 Magnetic Inscriptions
	5.2 The Magnetic Score as Inherent Score
	5.3 Relational Inscriptions

	 6. Future Work
	 7. Conclusions
	 8. acknowledgments
	 9. References

	8 - TENOR_BOSTON_2023_paper_7600 Armitage.pdf
	 1. Introduction
	 2. Background
	2.1 Perspectives on Agency
	2.2 Exploring Agency through Boundary Objects

	 3. Agential Scores
	3.1 Agency of Points and Lines
	3.2 A Typology of Entanglements with Agential Scores
	3.3 Assemblages and Intra-action
	3.4 Agential Scores in Practice via Artificial Life

	 4. Tölvera: a Library of Number Beings
	4.1 Number Beings
	4.2 Mappings and Visualisations
	4.3 Implementation

	 5. Musical Encounters with Tölvera
	5.1 Encounters Summaries
	5.1.1 Encounter 1: Boids & Two Guitars
	5.1.2 Encounter 2: Physarum & Two Guitars
	5.1.3 Encounter 3: Boids, Physarum, Guitar & Conductor
	5.1.4 Encounter 4: Reversing Roles from Encounter 3

	5.2 Post-Encounters Discussion

	 6. Discussion
	6.1 Fluid Material Agency
	6.2 Mapping of Self Onto Agential Materials
	6.3 Perceiving the Intra-Actants
	6.4 Future Considerations

	 7. Conclusion
	 8. References

	9 - TENOR_BOSTON_2023_paper_2697 Hori.pdf
	 1. Introduction
	 2. Note-Tablature-Form Tree for Monophonic Cases
	2.1 Fingering decision based on HMM
	2.2 Note-tablature-form tree

	 3. Note-Tablature-Form Tree for Polyphonic Cases
	3.1 From chord to tablature
	3.2 From tablature to form
	3.2.1 Representing forms by finger numbers
	3.2.2 Numbering string-fret pairs
	3.2.3 Non-decreasing finger numbers
	3.2.4 Enumerating left hand forms
	3.2.5 Inserting mandatory separators
	3.2.6 Inserting optional separators

	 4. Conclusion
	 5. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	11 - TENOR_BOSTON_2023_paper_9804 Shapiro.pdf
	 1. Introduction
	 2. Related Work
	 3. Language Features
	3.1 Low-Level Fundamentals
	3.2 High-Level Templates
	3.3 Additional Features

	 4. Sample Program
	 5. Compiler Structure
	 6. Template Expansion Logic
	6.1 Backbone Logic
	6.1.1 Generating Notes in a Diatonic Scale
	6.1.2 Generating Chord Templates in a Diatonic Scale

	6.2 Template Expansions
	6.2.1 Scales
	6.2.2 Chords and Arpeggios
	6.2.3 Cadences
	6.2.4 Harmonic Sequences

	 7. Conclusion
	 8. References

	12 - TENOR_BOSTON_2023_paper_6679 Yamamoto.pdf
	 1. Introduction
	 2. Preliminaries
	2.1 Tonal Pitch Space
	2.2 Distance Models concerning Harmonic Features

	 3. Our Approach
	3.1 From Chord Names to Chord Interpretation Paths
	3.2 Between Chroma Vectors and Chord Interpretations
	3.3 From Chroma Vectors to Chord Interpretation Paths

	 4. Experiments
	4.1 Dataset
	4.2 Results

	 5. Conclusion
	 6. References

	13 - TENOR_BOSTON_2023_paper_9279 Gaulhiac.pdf
	 1. Introduction
	 2. Background
	 3. Harmonic Descriptors
	3.1 Implementation & Spectra Computation
	3.2 Concordance
	3.3 Third Order Concordance
	3.4 Roughness

	 4. From Harmonic Descriptors to Harmonic Maps
	4.1 Stability of Sounds
	4.2 Timbral Considerations

	 5. Interactive Harmonic Maps
	5.1 Implementation
	5.2 MPE Control & Harmonic Trajectories

	 6. Examples
	6.1 Influence of the Number of Partials
	6.2 Influence of Timbre
	6.3 Influence of Dynamics & Playinng Techniques
	6.4 Influence of Harmonicity
	6.5 Roughness
	6.6 Third Order Concordance

	 7. Conclusions & Future Work
	 8. References

	14 - TENOR_BOSTON_2023_paper_7968 Lepper.pdf
	 1. Introduction
	 2. Beaming Rules as a Transformation Pipeline
	2.1 Foundation: Genuine Beams
	2.2 Modification of Genuine Beams
	2.3 Beams for Rhythms
	2.4 Local Transformations of Beam Patterns

	 3. Additional External Data
	3.1 Indirect Influence by Stem Direction
	3.2 Direct Influence
	3.3 Beams expressing Tempo – ``Feathered'' Beams

	 4. Two-Dimensional Layout: Vertical Position and Pitch Height
	4.1 Ergonomic Significance of Beam Inclination
	4.2 Stem Direction of Beam Aggregates
	4.3 Graphical Placement of Beam Aggregates
	4.4 Fine Tuning against the Staff Lines
	4.5 Resolving Conflicts by Breaking Beams
	4.6 Resolving Conflicts by Knees
	4.7 Resolving Conflicts by Changing Height and/or Inclination

	 5. Aspects Not Covered
	 6. Conclusion
	 7. References
	 A. Appendices
	A.1 Polymetric Constellations Expressible by Beams

	16 - TENOR_BOSTON_2023_paper_2367 Onttonen.pdf
	 1. Introduction
	 2. Main features
	2.1 Leader interface
	2.2 Musician interface

	 3. Design principles
	 4. Development process
	 5. Technical implementation and limitations
	 6. Case: Labra
	6.1 General remarks
	6.2 Two examples

	 7. Conclusions and future work
	 8. References

	18 - TENOR_BOSTON_2023_paper_9910 Bell.pdf
	 1. Introduction
	1.1 Are scores maps?
	1.2 Maps do not represent time
	1.2.1 Databases as an art form
	1.2.2 Morton Feldman and the European clock makers

	 2. Corpus-Based Concatenative Sound Synthesis (CBCS) today
	2.1 Timbre Space
	2.2 Corpus-Based Concatenative Synthesis - State of the art

	 3. First attempts
	 4. Motivations
	 5. Workflow
	5.1 Corpus Selection
	5.2 Analysis in FluCoMa
	5.2.1 Slicing
	5.2.2 mfcc on each slice - across one whole slice/segment
	5.2.3 statical analysis over each slice
	5.2.4 Normalization
	5.2.5 Dimensionality Reduction
	5.2.6 Neighbourhood queries

	5.3 PatchXR
	5.3.1 Interaction and OSC communication

	 6. Future works: the Raspberry Pi Orchestra
	 7. Conclusions
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	Blank Page
	Blank Page
	Panariello P. 74.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

