
A HIERARCHIC DIFF ALGORITHM FOR COLLABORATIVE MUSIC
DOCUMENT EDITING

Christopher Antila
nCoda

christopher@antila.ca

Jeffrey Treviño
California State University, Monterey Bay

jtrevino@csumb.edu

Gabriel Weaver
University of Illinois, Urbana-Champaign

gweaver@illinois.edu

ABSTRACT

We describe an application of hierarchic diff to the collab-
orative editing of tree-based music representations, using
Zhang and Shasha’s tree edit distance algorithm as imple-
mented within the XUDiff tool. The edit distance between
two trees is the minimum number of edit operations neces-
sary to transform one tree into the other. We consider com-
mon operations on the score tree—deleting, changing, and
appending tree nodes—to derive a minimal edit sequence,
known as an edit script, and we compare the performance
of the widely used Longest Common Subsequence algo-
rithm against our approach. We conclude by summarizing
implications for the design of collaborative music docu-
ment software systems.

1. INTRODUCTION

1.1 Collaborative Document Creation Requires Diff
Algorithms

In distributed, collaborative document creation, multiple
editing agents may change the same original information
simultaneously, in complex and overlapping ways. To al-
low users to resolve conflicting edits and to create a reliable
and transparent edit history, robust systems for collabora-
tive editing often depend on Centralized Version Control
Systems (also known as Revision Control Systems (RCS)
and Source Code Management (SCM) systems). These
systems maintain a centralized information representation
(repository) and a history of users’ changes to it; the dif-
ference between two edited versions of the information
is known as a diff, and this difference can be calculated
and represented in various ways. Distributed, collaborative
music document editing presents unique challenges for the
implementation of version control systems, and especially
for the implementation of a diff algorithm.

1.2 The Longest Common Subsequence Algorithm as
Default Diff

Traditional document comparison algorithms, such as in
the Unix diff program, take two sequences of characters
as input and output an edit script to transform one sequence

Copyright: c©2017 Christopher Antila et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

into the other. An edit script consists of a sequence of edit
operations (usually insert, delete, and update) to transform
the first sequence relative to some entity—usually charac-
ters, words, or lines. The edit distance is the minimum cost
the edit script gives for each operation. The Longest Com-
mon Subsequence algorithm and its variants are the most
common for computing an edit script and cost.

The Longest Common Subsequence algorithm works well
in situations where the inputs are sequences of characters
and one needs to compare those sequences relative to char-
acters, words, or lines, but many modern file formats rely
on hierarchical object models to encode multiple levels of
meaning (e.g. XML, blocks of code). As such, different
algorithms for hierarchical structures become necessary.

Consider the following two problems that result from this
mismatch between character- or line-based diff tools and
tree-structured input. First, comparing documents in terms
of low-level entities (e.g. lines) may not result in changes
that are meaningful to the domain, because lines are of-
ten an artifact of presentation: for example, one can gen-
erate ‘noisy diffs’ by just changing whitespace. Second,
the manner in which one defines document similarity may
change depending upon the task at hand. A poet may get
along fine comparing texts in terms of lines, which reflect
part of the structure of the text. A musician, however, may
want to compare documents in terms of additional infor-
mation that a line-based approach discards. Our poet, after
all, may require a stanza-based representation. Other com-
munities present similarly various demands: scholars may
want to analyze and compare texts relative to other struc-
tures, such as paragraphs or sections.

1.3 Collaborative Music Information Requires a
Hierarchic Diff

These problems are of specific importance to version con-
trol for collaborative music document editing, both in terms
of usability as well as how one may want to define ‘mean-
ing’ and ‘similarity’ in musical information. First, the ‘noisy
diff’ problem—in reporting differences that are not rele-
vant to musicians—creates a usability problem. Although
programmers have become accustomed to noisy diffs and
the work-arounds they require, the low adoption rate of
computer-driven music analytic tools, and the general lack
of comfort among music scholars and artists with these
tools, suggest that a program producing diffs of meaning-
less changes would be poorly received by the community.
Second, the meaning of textually encoded music always
requires additional interpretation, and a one-dimensional

mailto:christopher@antila.ca
mailto:jtrevino@csumb.edu
mailto:gweaver@illinois.edu
http://creativecommons.org/licenses/by/3.0/


sequence of characters (the data structure for which LCS
diff was designed) will not allow musicians to compare two
different interpretations of the same musical information.

Instead, musicians need the ability to compare musical
information in the presence of its logical organization, which
must be expressed hierarchically. Therefore, musicians
need the ability to compare two versions of a hierarchi-
cal structure. Musicians may also want to compare two
versions of a score at different levels of abstraction, as rep-
resented by these hierarchical structures, or restrict com-
parison to entities with certain properties: for example, a
musician may want to compare two versions of a score in
terms of pitch class alone, or of higher-level features like
phrase structure. Moreover, a musician may want to filter
a score to compare two versions of only a single instru-
ment’s staff, or other musical abstractions. For any of this
to be possible, diff algorithms must compare edits to tree-
based document elements, rather than to document lines or
characters.

1.4 Relevant Precedents in the Music and Computer
Science Literatures

From the perspective of computer science, our proposed
approach leverages previous work from other domains in
both industry and in academia. Within industry, there are
proprietary, hierarchy-aware difference engines that com-
pare source code in a variety of edit operations, such as
the SmartDifferencer by Semantic Designs [1]. Within
academia, the tree diffing problem has been long studied
by theoretical computer science [2]. Researchers such as
Chawathe et al. and Cobena et al. have studied alternative
algorithms, such as subtree hashing, and even the use of
IDs to align subtrees before similarity computation [3, 4].
We employ the Zhang and Shasha tree difference algorithm
to solve the edit distance between trees [5, 6].

While this topic has been approached rigorously in the
computer science literature, few relevant precedents exist
in the music literature. Almost all software systems for
music document creation assume a single user, and collab-
orative music document creation exists largely as an exper-
imental pursuit. Precedents fall largely into the category of
systems for experimental music and interdisciplinary artis-
tic collaboration. Within these experimental systems, ver-
sion control for distributed workflows has been addressed
only implicitly. For example, although Wüst and Jordá
track versions in a recursively nested, tree-based structure,
in which each successive edit becomes a child node of the
version edited, they do not describe algorithms or inter-
faces for calculating edit distances on this version tree [7].
Likewise, other systems describe distributed collaboration
interfaces without addressing the interaction of data repre-
sentation and version comparison [8, 9].

2. APPLYING THE ZHANG AND SHASHA
ALGORITHM

2.1 The Zhang and Shasha Algorithm

Our initial approach uses Zhang and Shasha’s tree edit dis-
tance algorithm, as implemented within the XUDiff tool

[10]. The edit distance between two trees is the mini-
mum number of edit operations necessary to transform one
tree into another. The edit operations we consider include
deleting, changing, and appending tree nodes. As before, a
sequence of edit operations between two trees is called an
edit script and the total number of edits the edit distance.

There are several benefits to the Zhang and Shasha tree
edit difference algorithm. First, the algorithm produces
a tree edit distance that can function flexibly as a metric
(assuming the cost function is also a metric). For exam-
ple, collaborators can use distance metrics to explore the
similarity of an entire corpus of musical scores—rather
than just two scores—because the metric’s notion of dis-
tance aligns with our intuition about distance in the phys-
ical world. This distance metaphor allows designers to
leverage existing musical research in topological feature
similarity metrics, which expands the algorithm’s utility
beyond the notion of hierarchic diff, into new applications
such as automated recommendations based on similarity
measures [11, 12, 13]. Second, the algorithm is relatively
simple and lends itself to a straightforward implementation
that can be maintained by an open-source community. The
intent of the open-source community is to support an ex-
tensible framework for hierarchical comparison of a wide
variety of document types across a number of domains.
In the future, other algorithms, such as those mentioned
above, may be implemented to understand more about the
effect of different tree-edit distance algorithms on similar-
ity results.

after

43
before

Figure 1. An edit that switches the first and second voices
in a staff. Stem direction is the only visual difference, but
the underlying representation changes substantially.

2.2 A Comparative Example

Consider the case of a simple edit: exchanging a staff’s two
voices. That is, as shown in Figure 1, the upward-facing
stems of voice one become the downward-facing stems of
voice two, and vice versa.

While Common Western Notation displays only a change
of stem direction, a tree-based, hierarchic representation of
this musical information must alter both the labeling and
succession of elements. In the MEI XML representation
of a music document, the voice-switch example may be
encoded in the following way:



<staff n="1">
<layer n="1">

<note pname="a"/>
<note pname="b"/>
<note pname="c"/>

</layer>
<layer n="2">

<note pname="e"/>
<note pname="f"/>
<note pname="g"/>

</layer>
</staff>

After the voice swap, the encoding becomes:

<staff n="1">
<layer n="1">

<note pname="e"/>
<note pname="f"/>
<note pname="g"/>

</layer>
<layer n="2">

<note pname="a"/>
<note pname="b"/>
<note pname="c"/>

</layer>
</staff>

2.3 Diff Computation Performance Comparison

This example, although basic, motivates the need to to com-
pare representations of music in terms of hierarchical struc-
ture, rather than lines or characters. Figure 2 illustrates an
edit script that maps one version of the above MEI-encoded
score to another in terms of lines (LCS algorithm). The
line-based approach successfully captures the need to ex-
change the notes between layers; however, the algorithm
adds additional noise, because diff compares the MEI
rather than the hierarchical structure encoded by the MEI.
As a result, the total edit distance is 10. If practition-
ers are interested in understanding change relative to the
hierarchical object model of MEI, they will need to sift
through the noisy changes produced by a line-based com-
parison. As mentioned earlier, this may be problematic for
widespread adoption within the music community.

In contrast, Figure 3 illustrates an edit script that maps
one version of the above MEI-encoded score to another
in terms of MEI’s hierarchical object model (Zhang and
Shasha algorithm). As with the LCS algorithm, the tree-
based approach successfully captures the need to exchange
the notes between layers; however, unlike the LCS algo-
rithm, the edit distance between individual subtrees has
also been summarized. This can be helpful for interpre-
tation, as subtrees closer to the root represent higher-level
constructs within MEI, and practitioners can interpret the
comparison of the music at multiple levels of abstraction,
ranging from low-level notes (six notes, each with an
edit cost of 1) to higher-level layers (two layers, each
with an edit cost of 3) and staves (one staff, with an

<staff n="1">

  <layer n="1">

     <note pname="a"/>

     <note pname="b"/>

     <note pname="c"/>

  </layer>

  <layer n="2">

     <note pname="e"/>

     <note pname="f"/>

     <note pname="g"/>

  </layer>

</staff>

<staff n="1">

     <note pname="e"/>

     <note pname="f"/>

     <note pname="g"/>

  </layer>

  <layer n="2">

     <note pname="a"/>

     <note pname="b"/>

     <note pname="c"/>

  </layer>

</staff>

  <layer n="1">

delete, 1

delete, 1

delete, 1

delete, 1

delete, 1

insert, 1

insert, 1

insert, 1

insert, 1

insert, 1

Figure 2. The figure above illustrates the output of diff
applied to MEI. A total edit distance of 10 results from
updating the notes in layer 1 and layer 2 (cost of 6), as well
as updating layer tags (cost of 4). Nearly half of the edit
distance is ‘noise’ from deleting lines with layer tags, an
artifact of comparing versions in terms of lines instead of
MEI elements.

edit cost of 6). Most notably, the tree-based element-by-
element comparison reduces the edit distance to almost
half of that of the LCS algorithm: the edit distance has
been reduced to 6, from LCS’s 10, most of which was
noise from deleting lines with ‘layer’ tags (an artifact of
line-based comparison).

3. CONCLUSIONS

The recently emerged potentials of online, collaborative
music applications illustrate several ways that a robust, hi-
erarchic diff algorithm for music can enable newly col-
laborative musicology, composition, and music education
through document utilities [14, 15, 16, 17]. Yet the com-
mercial presentation of widely used digital engraving tools
still conflates the act of sharing with the act of collab-
oration, although these remain distinct from each other.
As a recent advertisement for the Sibelius engraving pro-
gram exhorts, ‘Collaborate more easily with others and
distribute your compositions for the world to hear. Share
scores through email, upload and publish them as sheet
music on ScoreExchange.com, and even share your com-
position as a video or audio file on YouTube, Facebook,
and SoundCloud’ [18]. While file exchange between mu-
sic authors remains crucial for musical creativity and col-
laboration beyond notation, it is time for engraving soft-
ware to embrace the potentials of genuinely collaborative
music document editing interfaces. But distributed music
document collaboration requires robust, intuitive version
control algorithms and interfaces, and designers must re-
assess the task of music representation in light of the need
for hierarchic diff. The superior performance of the Zhang



staff 1

layer 1

note a note b note c

layer 2

note e note f note g

staff 1

layer 1

note e note f note g

layer 2

note a note b note c

3,0 3,0

6,0

update, 1
update, 1

update, 1

update, 1
update, 1

update, 1

Figure 3. The figure above illustrates the output of
xudiff applied to MEI. A total edit distance of 6 results
from updating the notes in layer 1 and layer 2. Total costs
are aggregated across the hierarchical structure of the MEI
text.

and Shasha algorithm shown here suggests that purely tree-
based representations, such as MEI, should be adopted for
collaborative music software systems.

Acknowledgments

Research conducted for the nCoda project has been sup-
ported by Colorado College’s SEGway faculty support grant.

4. REFERENCES

[1] S. Designs, “Semantic Designs: Smart Differencer
Tool.” [Online]. Available: http://www.semdesigns.
com/Products/SmartDifferencer/

[2] P. Bille, “A Survey on Tree Edit Distance and Related
Problems,” in Theoretical Computer Science, vol. 337,
June 2005, p. unknown.

[3] S. Chawathe et al., “Change Detection in Hierarchi-
cally Structured Information,” in Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’96), June 1996, pp. 493–504.

[4] G. Cobéna et al., “Detecting Changes in XML Docu-
ments,” in Proceedings of the 18th International Con-
ference on Data Engineering. IEEE, February and
March 2002, pp. 41–52.

[5] K. Zhang and D. Shasha, “Simple Fast Algorithms for
the Editing Distance between Trees and Related Prob-
lems,” Siam Journal of Computing, vol. 18, pp. 1245–
1262, December 1989.

[6] K. Zhang, “The Editing Distance between Trees: Al-
gorithms and Applications,” Ph.D. dissertation, New
York University (NYU), 1989.

[7] O. Wüst and S. Jordà, “Architectural Overview of a
System for Collaborative Music Composition over the
Web,” in Proceedings of the 2001 International Com-
puter Music Conference. Citeseer, 2001, pp. 298–301.

[8] S. Balachandran and L. Wyse, “Computer-mediated
Visual Communication in Live Musical Performance:
What’s the Score?” in Arts and Technology, A. L.
Brooks, Ed. Springer, 2012, vol. 101, pp. 54–
62. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-33329-3 7

[9] D. Hepting and D. Gerhard, “Collaborative Computer-
aided Parameter Exploration for Music and Ani-
mation,” Computer Music Modeling and Retrieval,
pp. 158–172, 2005. [Online]. Available: http://www.
springerlink.com/index/XJXLV487NLUU9W9V.pdf

[10] G. Weaver, “Security-Policy Analysis with eXtended
Unix Tools,” Ph.D. dissertation, Dartmouth College,
2013.

[11] J. P. Bello, “Measuring Structural Similarity in Music,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 7, pp. 2013–2025, 2011.

[12] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman,
“A Large-scale Evaluation of Acoustic and Subjective
Music-similarity Measures,” Computer Music Journal,
vol. 28, no. 2, pp. 63–76, 2004.

[13] Y. Panagakis and C. Kotropoulos, “Music Genre Clas-
sification via Topology Preserving Non-negative Ten-
sor Factorization and Sparse Representations,” in 2010
IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2010, pp. 249–252.

[14] D. Martin et al., “LeadsheetJS: A Javascript Library
for Online Lead Sheet Editing,” in Proceedings of
The First International Conference on Technologies for
Music Notation and Representation, 2015.

[15] P. McCulloch, “THEMA: A Music Notation Software
Package with Integrated and Automatic Data Collec-
tion,” in Proceedings of The First International Con-
ference on Technologies for Music Notation and Rep-
resentation, 2015.

[16] Flat, “flat.io.” [Online]. Available: flat.io

[17] T. Bača, J. Oberholtzer, J. Treviño, and V. Adán, “Ab-
jad: An Open-source Software System for Formalized
Score Control,” in Proceedings of The First Interna-
tional Conference on Technologies for Music Notation
and Representation, 2015.

[18] Avid, “Sibelius: Features.” [Online]. Available:
http://www.avid.com/sibelius/features

http://www.semdesigns.com/Products/SmartDifferencer/
http://www.semdesigns.com/Products/SmartDifferencer/
http://dx.doi.org/10.1007/978-3-642-33329-3_7
http://dx.doi.org/10.1007/978-3-642-33329-3_7
http://www.springerlink.com/index/XJXLV487NLUU9W9V.pdf
http://www.springerlink.com/index/XJXLV487NLUU9W9V.pdf
flat.io
http://www.avid.com/sibelius/features

	 1. Introduction
	1.1 Collaborative Document Creation Requires Diff Algorithms
	1.2 The Longest Common Subsequence Algorithm as Default Diff
	1.3 Collaborative Music Information Requires a Hierarchic Diff
	1.4 Relevant Precedents in the Music and Computer Science Literatures

	 2. Applying The Zhang and Shasha Algorithm
	2.1 The Zhang and Shasha Algorithm
	2.2 A Comparative Example
	2.3 Diff Computation Performance Comparison

	 3. Conclusions
	 4. References

