IS THERE A DATA MODEL IN MUSIC NOTATION?

Raphal Fournier-S’niehotta
CNAM

fournier@cnam. fr

ABSTRACT

Scores are structured objects, and we can therefore envis-
age operations that change the structure of a score, com-
bine several scores, and produce new score instances from
some pre-existing material. Current score encodings, how-
ever, are designed for rendering and exchange purposes,
and cannot directly be exploited as instances of a clear data
model supporting algebraic manipulations. We propose an
approach that leverages a music content model hidden in
score notation, and define a set of composable operations
to derive new “scores” from a corpus of existing ones. We
show that this approach supplies a high-level tool to ex-
press common, useful applications, and can easily be im-
plemented on top of standard components.

1. MOTIVATION

The digital encoding of music notation is a long stand-
ing endeavour, and has given rise to many proposals [1].
Nowadays, leading encodings are those which rely on the
XML format to represent music notation as structured doc-
uments. MusicXML [2] is probably the most widespread
one, due to its acceptance by major engraver software ap-
plications (Finale, Sibelius, and MuseScore) as an exchange
format. This interoperability motivation yields an encod-
ing which simultaneaously conveys structural, content and
rendering information in a somewhat intricate representa-
tion. Another issue is the dependency of notation syntax
and its interpretation on locations, periods, styles, and cul-
tural contexts. Designing a format apt at capturing this
high variability in a single and consistent representation is
quite challenging. The MEI initiative [3, 4] attempts to
address this challenge with an extensible format [5]. It re-
lies on pre-defined components such as, for instance, the
Common Music Notation (CMN) module. The initial dis-
cusions held in the recent W3C Music Notation Commu-
nity Group [6] , launched in Sept. 2015, also point to the
difficulty of a general, consistent, encoding framework that
would capture the syntactic and semantic nuances of music
notation throughout the specialized context of its use.

If we consider a specific notational context, and assume
the existence of a specialized format that accurately cov-
ers the musical idiosyncrasies of this context (for instance

Copyright: ©2016 Raphal Fournier-S’nichotta et al. This
is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which ermits unre-
L 14

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Philippe Rigaux
CNAM
philippe.rigaux@cnam. fr

Nicolas Travers
CNAM

nicolas.travers@cnam. fr

an MEI module as stated above), then it makes sense to
assume that this format encapsulates a data model for con-
tent encoding, at least for this particular part of the mu-
sic repertoire. Focusing on Common Music Notation for
instance, this data model can partly be identified through
the commonalities of distinct formats such as, say, Mu-
sicXML, MEI and Lilypond. Beyond their different initial
motivations and approaches, they share a basic set of fea-
tures that characterize the music material to be represented.

Obviously, this notion of “content model” is controversial
in the context of music notation: most of the elements that
describe a score rendering can, to some point, be consid-
ered as significant and part of the global meaning conveyed
by the notation. Although the separation of content and
rendering components is a recurring topic of discussion for
the designers (see for instance [7]), no score encoding, to
our knowledge, has yet been designed with such a motiva-
tion in mind. One of the greatest benefits would indeed be
the ability to “style” score contents, akin to what has been
achieved for the rendering of HTML/XML content in the
area of Web documents.

In the present paper, we address another motivation for
separating content/rendering concerns. Being able to iden-
tify a content model opens the way to the vision of score
corpora as a collection of structured objects, and makes it
possible to envisage operations that “plays” with the struc-
tured content in order to extract useful parts, combine sev-
eral scores, and derive new content from existing ones.

There are strong motivations for enabling such a system.
It would indeed provide, via a high level language, a num-
ber of useful operations.

o Automatic content management. Split a score in parts,
distribute them to digital music stands, apply trans-
positions and add decorations (directives) as needed;
conversely, merge distinct parts as a single score;

e Search and compare. Search scores which satisfy
some criteria; extract the matching fragments; align
those fragments in a new score for further investiga-
tion;

o Advanced analytic. Derive analytic features (e.g.,
harmonic progression); annotate scores with these
features; produce new representations emphasizing
structural or compositional aspects.

Our perspective is to equip a Digital Score Library (DSL)
with such an algebraic language, in order to derive “inten-
tional” scores from “extensional” ones (the Library), in a

mailto:fournier@cnam.fr
mailto:philippe.rigaux@cnam.fr
mailto:nicolas.travers@cnam.fr
http://creativecommons.org/licenses/by/3.0/

direct correspondence with relational databases and the re-
lational algebra [8]. We focus on operations that apply to
the model space in closed form, i.e., which map instance(s)
of the model to other instance(s). With closure comes com-
position: if s is a model instance (a “score”) and oy, 02 are
two operations, then o1 (s) is a “score”, 02(01(s)) is also a
“score”, and we obtain an algebraic structure (in the math-
ematical sense) that lets us manipulate score material in
order to produce new representations.

This approach brings, to the design and implementation
of applications that deal with symbolic music, the standard
and well-known advantages of specialized data manage-
ment systems. Let us just mention the few most important:
(1) ability to rely on a stable, well-defined and expressive
data model, (ii) independence between logical modeling
and physical design, saving the need to confront program-
mers with intricate optimization issues at the application
level and (iii) efficiency of set-based operators and indexes
provided by the data system.

In summary, we expose in the rest of the paper the fol-
lowing contributions

1. A vision. We describe in Section 2 a conceptual set-
ting where digital libraries of score encodings can
be leveraged to support structured content manipu-
lation.

2. A model. Section 3 proposes a model that captures
the most common features of CMN, along with a
high-level, algebraic query language.

3. Implementation guidelines. Finally, we provide in
Section 4 a technical discussion, based on our cur-
rent implementation choices, showing the limited ef-
forts required to achieve our vision.

Section 5 briefly discusses related work and Section 6
concludes the paper and discusses ongoing and future work.

2. VISION

Figure 1 summarizes the envisioned system. We propose
in Section 4 a technical discussion related to our current
implementation choices, but the figure exposes the main
conceptual features at a convenient level of abstraction.

The bottom layer is a Digital Score Library (DSL) man-
aging corpora of scores in some encoding, whether Mu-
sicXML, MEI, or any other legacy format (e.g., Humdrum).
As explained in the introductory part, such encodings are
not designed to support content-based manipulations, and,
as a matter of fact, it is hardly possible to do so. Access to
explicit music content information is intricate, due to the
complex interleaving of content-oriented and rendering-
oriented elements. Extracting a mere sequence of notes
from MusicXML or MEI for instance is not a trivial task.
Using implicit features that could be derived from the en-
coded content is even more difficult.

We therefore map the encoding toward a model layer where
the content is extracted from the encoding and structured
according to the model structures. One mapper has to be

(Serialization / Visualization
styling)
000
Ly auer
Data ScoreAlg +
model
(virtual
corpora) 00 00 0
- T 03
(.
Encoding
(The Library) eee 000

MEI MusicXML

Figure 1. Envisioned system

defined for each possible encoding, as shown by the fig-
ure which assumes that MusicXML and MEI documents
cohabit in a same DSL. Adding a new source represented
with a new encoding is just a matter of adding a new map-
per. Each document in the DSL is then mapped to a (vir-
tual) instance of the model. These define virtual — no mate-
rialization occurs — corpora of music notation objects that
we will call vScores in the following.

The data model layer encapsulates both data representa-
tion and data operations. We further distinguish two kinds
of operations: structural operators and user-defined func-
tions (UDFs). The former implement the idea that struc-
tured score management corresponds, at the core level, to
a limited set of fundamental operations, grouped in a score
algebra, that can be defined and implemented once for all.
The latter acknowledges that the richness of music nota-
tion manipulations calls for a combination of these opera-
tions with user-defined functions at early steps of the query
evaluation process. Modeling the structural operators and
combining them with user-defined operations constitutes
the operational part of the model. This yields a query lan-
guage whose expressions define the set of transformations
that produce new vScores from the base corpora.

The result of a query is itself a new, intentional corpora.
This gives rise to several potential exploitations. First,
the result can be kept in the user space, as a “view” (us-
ing database terminology) over the base corpora. A per-
former could for instance keep a set of parts for her next
rehearsal/concert. Second, the query result can be visual-
ized, possibly with representations that emphasize analyti-
cal aspects computed from the scores.

Finally, derived vScores can be in serialized in a perma-
nent storage, in a format compliant to one of the encoding
standards. This is where styling could take place, in a pro-
cess which is the exact opposite of the mapping which ab-
stracts a content from MusicXML or MEI documents. Se-
rialization of vScores implies the “decoration” of pure con-
tent with rendering features. Voices must be assigned to
staves, the clef must be chosen based on the voices range,

alterations must be displayed according to some general
policy, etc. We do not elaborate on this process which,
as explained above, is directly related to the complex is-
sues of concerns separation in the music notation domain
and falls beyond the scope of our current work. We note
that, in some sense, the vision outlined above constitutes
a possible framework to investigate this issue. A way to
provide a meaningful distinction between content and ren-
dering would indeed be to define a pair of (mapping / seri-
alization) operations that produce an alternative rendering
of a score while preserving its content.

In the subsequent sections, we implement this vision with
a conceptual model applied to CMN, and expose our tech-
nical choices to make the whole approach practical.

3. THE DATA MODEL

We now present a simple data model that extends the rela-
tional model with the concepts of voices and events. The
model features a core algebra which is mostly illustrated
via examples expressed in a high-level language. A formal
presentation of the algebra can be found in [9].

3.1 Schema: events, voices, scores and opera

CMN scores are modeled as polyphonic pieces composed
of “voices”, each voice being a sequence of “events” in
some music-related domain (notes, rests, chords, syllabs)
such that only one event occurs at a given instant for a
given duration. The concepts of voices and events (with
non null duration) are shared by most of the encodings we
are aware of, in the field of CMN.

3.1.1 Events

An event e is some value v observed during an interval
[t1,t2]. For our purposes, v is any value taken from a do-
main dom, and we note £(dom) the set of events on dom.
Of particular interest are the following (musical) domains,
with some internal operators.

e Sounds (dsound): represents n simultaneous tones,
n > 1). This covers simple sounds (notes, n = 1)
and composed sounds (chords, n > 1).

e Syllables, (dsyll).

Sound is a complex notion that can be decomposed in
several components (height, intensity, timbre). In practice,
we are limited to those captured by the notational system,
mostly the frequency (pitch and octave). Other aspects are
sometimes indirectly represented (for instance, timbre by
the instrument name).

We do not restrict the events to musical domains. For
instance, an event in the dint domain might represent the
value of an interval between two voices at a given times-
tamp. Such events can be inferred from the notation, and
can enrich the representation. Beyond this simplistic il-
lustration, this permits the definition of generalized scores
that extend the usual concept by combining musical events
with non-musical domains representing, for instance, some
analytic feature.

3.1.2 Voices as Time Series

A musical time series (or voice to make it short) is a map-
ping from the time domain 7 (a discrete, ordered set iso-
morphic to Q) into a set of events £(dom). We denote by
Voice(dom) the type of a voice, where dom is the domain
of interest.

A voice is an instance of a voice type. So, for instance:

e v;: Voice(dsound) denotes a voice v; which repre-
sents a function from 7 to “pure” music events.

e vy: Voice(dint) denotes a voice vy which repre-
sents a function from 7 to integers, such as the in-
tervals between two (music) voice.

e v3: Voice(dsyll) denotes a voice which represents a
function from 7 to text, such as lyrics.

Since a voice is a function, there is exactly one event at
each instant (in other words, events cannot overlap). We
can partly relax this constraint by adding to each domain a
distinguished null value 1. which denotes the “absence” of
event (see [9] for a detailed discussion).

3.1.3 Scores as synchronized time series

We can now define scores. At a basic level, a score is a
synchronization of voice(s). We extend this definition to
capture a recursive organization of scores built from sub-
scores.

e v a voice, then v is a score.

e ifsy,- .-, s, arescores, the sequence < Sq,: -+ , 8, >
is a score.

The type of a score is the enumeration of voices that con-
stitute a score, associated with their names. For instance:

1. The type T} of a quartet is

[violinl: dsound, violin2: dsound,
alto: dsound, cello: dsound]

2. The type T, of a vocal part is:
[lyrics: dsyll, monody: dsound]

3. The recursive structure of a score with a vocal part
of type T, and a figured bass is

[vocal: Tv, bass: dsound]

Instances of these types are time series from 7 to, respec-
tively, dsound?, dsound x dsyll, and (dsound x dsyll) x
dsound. Conceptually, the first one represents a function
which associates to each timestamp a 4-tuple of music events,
the second one a function which associates to each times-
tamp a pair (sound, syll). Essentially, a score extends the
concept of voice (i) by allowing several events to occur si-
multaneously and (ii) by labelling events with names, pro-
viding a “hook” to refer to them with operations. Unifying
the model for voices and scores makes it easy to define
operations that remain in a consistent setting.

3.1.4 Corpora as extended relations

Finally, an opus is a tuple of values which can either be
atomic values (strings, integers, floats) or scores. Opuses
with similar structure can be grouped in a Corpus. If we
compare with the standard relational approach, a corpus is
a container of similar objects, akin to a table, and an opus is
an element in the container (a row in the table). A database
is a set of corpora.

Since a corpus gathers opera with similar type, this type
can be summarized as a corpus schema. The following
example shows a possible schema for a Quartet corpus.

Quartet (id: int,

title: string,

composer: string,

published: date,

music: Score [vl: dsound,
v2: dsound,
alto: dsound,
cello: dsound

]

3.2 User query language

We need a concrete syntax to express our score manipu-
lations. Since we want to limit as much as possible the
extension required to adapt our model to an existing sys-
tem, this leaves two main options: SQL and XQuery. The
examples below are based on XQuery which presents sev-
eral features of interest, including the ability to incorporate
functions, and fits naturally with the hierarchical nature of
our data items (opuses, made of scores, made of voices,
with possibly intermediate levels).

In order to avoid formal developments, the main char-
acteristics of the language are introduced with examples.
The interested reader is referred to a companion paper [10]
that details the design of the query language and the re-
lated implementation issues. The examples below cannot
be directly evaluated as XQuery expressions, since they are
interpreted over virtual instances of the above score model.
The actual evaluation relies on a lightweight query rewrit-
ting presented in the next section.

The examples rely on the Quartet corpus (refer to the pre-
vious section for its schema). Our first example creates a
list of the Haydn’s quartets, reduced to the violin’s parts.

for $s in collection("Quartet")
where $s/composer="Haydn"
return $s/title, Score($s/music/vl, $s/music/v2)

Recall that music is an attribute of type Score of the
Quartet corpus. This first query shows two basic operators
to manipulate scores: projection on score/voices with the
standard*’/” XPath syntax, and creation of new scores with
the Score () synchronizer operator.

A third operator that allows the derivation of new score
contents is MAP: it represents a higher-order function that
applies a given function f to each event in a voice, and
returns the voice built from f’s results. Here is an example:
we want the quartets where the violinl part is played by a

B-flat clarinet. We need to transpose the v1 part 2 semi-
tones up.

for $s in collection ("Quartet")
where $s/composer="Haydn"
let S$clarinet := Map ($s/music/vl, transpose (2))
let Sclrange ambitus ($clarinet)
return S$s/title, S$clrange,
Score ($clarinet, $s/music/v2,
$Ss/music/alto, $s/music/cello)

This second query shows how to define variables that
hold new content derived from the stored scores via user
defined functions (UDFs). For the sake of illustration we
create two variables, Sclarinet and $clrange, call-
ing respectively ambitus () and transpose ().

In the first case, the function has to be applied to each
event of the violin voice. This is expressed with MAP
which yields a new voice with the transposed events. By
contrast, ambitus () is directly applied to the voice as a
whole. It produces a scalar value (not a voice).

MAP is the primary means by which new voices can be
created by applying all kinds of transformations. MAP is
also the operator that opens the query language to the in-
tegration of external functions: any library can be inte-
grated as a first-class component of the querying system,
providing some technical work to “wrap” it conveniently
(see next section).

By “mapping” a Boolean expression e to a voice, we can
filter out the events that do not satisfy e, replacing them
by the null event L. Note that this is different from se-
lecting a score based on some property of its voice(s). The
next query illustrates both functionalities: we select all the
psalms such that the vocal part contains some word,‘“nullify”’
the events that do not belong to the first ten measures, and
trim the voice to keep only non-null events.

for $s in collection("Psalters"

let $sliced := trim(select ($s/air/vocal/monody,
measure (5, 10)))

where contains ($s/air/vocal/lyriecs, "Heureux")

return S$s/title, Score($sliced)

We can take several opuses as input and produce an opus
with several scores as output. The following example takes
three chorals, and produces an opus with two scores asso-
ciating respectively the alto and tenor voices.

for $cl in coll("Chorals")[@i;E"BWV49"]/music,
$c2 in coll("Chorals") [GidH"BWV56"] /music,
$c3 in coll("Chorals") [CidH"BWV12"]/music

return <title>Excerpts of chorals</title>,

Score (Scl/alto, $c2/alto, S$c3/alto),
Score ($cl/tenor, S$c2/tenor, S$c3/tenor)

Finally, our last example illustrates the extended concept
of “score” as a synchronization of voices which are not
necessarily “music” voices. The following query produces,
for each quartet, a score containing the violin 1 and cello
voices, and a third one measuring the gap (interval) be-
tween the two.

for $s in collection ("Quartet")/music

let S$intervals := Map (Score ($s/vl, $s/cello),
interval ())

return Score ($s/vl, S$s/cello, $intervals)

Such a “score” cannot be represented with a traditional
rendering. Additional work on visualization tools that would

closely put in perspective music fragments along with some
computed analytic feature is required.

4. IMPLEMENTATION

Our system has been fully implemented in NEUMA. It in-
tegrates an implementation of our score algebra, a map-
ping that transforms serialized scores to vScores, and off-
the-shelf tools (a native XML database, BASEX !, a music
notation library for UDFs, MUsIc212[11]). This simple
implementation yields a query system which is both pow-
erful and extensible (only add new functions wrapped in
XQuery/BASEX). We present its salient aspects.

4.1 Architecture and query processing

Figure 2 shows the main implementation modules. Data is
stored in BASEX in two collections: the semi-virtual col-
lection (e.g., Quartet) of music documents (called opus),
and the collection of serialized scores, in MusicXML or
MEIL Each virtual element scoreType in the former is
linked to an actual document in the latter. Those collec-
tions are managed by the NEUMA digital library[12].

virtual instances

concrete instances Serialized scores

algebra@ e
©]

.. O 0O ..
query results

' Mappers,
Operators
Music21...

XQuery functions

Figure 2. Architecture

The evaluation of a query proceeds as follows. First (step
1), BASEX scans the virtual collection and retrieves the
opus matching the where clause. Then (step 2), for each
opus, the embedded virtual score element has to be materi-
alized. This is done by applying the mapping that extracts
a vScore instance from the serialized score, thanks to the
link in each opus.

Once a vScore is instantiated, algebraic expressions, rep-
resented as composition of functions in the XQuery syn-
tax, can be evaluated (step 3). We wrapped several Python
and Java libraries as XQuery functions, as permitted by
the BASEX extensible architecture. In particular, algebraic
operators and mappers are implemented in Java, whereas
additional, music-content manipulations are mostly wrap-
ped from the Python Music21 toolbox.

The XQuery processor takes in charge the application of
functions, and builds a collection of results, finally sent to
the client application (step 4). It is worth noting that the
whole mechanism behaves like an Active XML [13] docu-
ment which activates the XML content on demand by call-
ing an external service (here, a function).

'http://basex.org
Zhttp://web.mit.edu/music21

4.2 External components

How do we integrate functions that manipulate the score
representation? In general, we need to resort on an exter-
nal component. Getting the highest note of a voice for in-
stance is hardly expressible in XQuery. In general, getting
such features would require awfully complex expresssions.
This is due to very detailed decomposition of any XML
encoding which makes very difficult the reconstruction of
high-level features.

XQuery is extendible to user-defined functions, and the
point is technically harmless. In our current implementa-
tion, we simply “wrap” relevant functions in an external li-
brary compliant to BaseX. The following example retrieves
all the quartets such that the first violin part gets higher
than e6, using a highest() UDF.

for $s in collection("Quartet")
where highest ($s/music/v1l) > ’e6’ return S$s

A naive, direct evaluation would load the MusicXML (or
MEI) document from the underlying storage, pass it to the
function and get the result. This works with quite limited
implementation efforts. Such an evaluation raises, how-
ever, strong efficiency issues. In general, any function will
need to access to the whole score encoding (or to put it
differently, we cannot in general anticipate the part of the
score it needs to access). This has to be done for each score
in the collection: a clearly unacceptable burden, likely to
make the full query process highly inefficient.

A solution is to materialize the results of User Defined
Functions as metadata in the virtual document and to index
this new information in BASEX. This can directly serve as
a search criteria without having to materialize the vScore.
The result of the highest() function is such a feature. Index
creation simply scans the whole physical collections, runs
the functions and records it result in a dedicated index
sub-element of each opus, automatically indexed in BA-
SEX. To evaluate the query above, it uses the access path
to directly get the relevant opus.
for $s in collection("Quartet")

where index/vl/highest > ’e6’
return S$s

5. RELATED WORK

Music Information Retrieval has mostly considered so far
unstructured search, and notably similarity search [14]. Un-
structured search is convenient to the end user, and avoids
intricate considerations related to music notation structure.
A limitation is that the granularity of results stays at the
document level, and cannot access to finer internal compo-
nents. Our work allows such a fine-grained inspection.

An early attempt to represent scores as structured files
and to develop search and analysis functions is the Hum-
Drum format. Both the representation and the procedures
are low-level (text files, Unix commands) which make them
difficult to integrate in complex application. We are only
aware of a few other approaches. An attempt to trans-
pose database principles to score management is presented
in [15]. The authors of [16] study how XQuery may be di-
rectly used over MusicXML. XQuery is a general-purpose

http://basex.org
http://web.mit.edu/music21

query language which hardly adapts to the specifics of sym-
bolic music manipulation. Besides, by ignoring the issue
of the inherent underlying data model, closure of opera-
tions becomes undecidable, and the query language misses
the essential properties that makes it safely usable in appli-
cations.

We make the case for a clear identification of the data
model that underlies the operations on “scores”. This al-
lows to abstract from useless details, brings a support to
the definition of closed operations, and enforces to review
what kind of content we aim at manipulating. We might
always (rightly) complain that part of the meaningful con-
tent is lost, and that rare features (e.g., chords with varying
note durations) are not adequately captured by an abstract
model, but this seems the price to pay for a clear under-
standing of the stakes. As a side effect, this allows to inte-
grate distinct encodings in a consistent setting.

The mapping process by which this is achieved is remi-
niscent from mediation architectures used for data sources
integration [17, 18, 19, 20], and can be seen as an applica-
tion of method that combines queries on physical and vir-
tual instances. It borrows ideas from ActiveXML [13], and
in particular the definition of some elements as “triggers”
that activate external calls.

Abstracting an agnostic score content from XML formats
is a design shared by several earlier proposals, including
NEUMA [21], Music21 [11] and formal approaches such
as Euterpea [22] that attempt to model music content for
generative or analytic purposes. This allows in particu-
lar to develop manipulation primitives independently from
serialization concerns. We can re-use for instance in our
implementation some of the analytic functions supplied
by Music21, and combine these functions to the structural
database operators that constitute the core of our contribu-
tion.

6. CONCLUSION AND FUTURE WORK

We propose a new approach to treat music notation as a
structured source of information apt at supporting modern

query techniques inspired by object and relational databases.

A debatable aspect of the approach is the lossy mapping
that extract “content” from the notation. There is no well-
defined answer to the separation of score content from score
rendering, which can be perceived as an encouragement to
further investigate the issue.

On the other hand, having a high-level specification lan-
guage to combine, change and derive scores offers quite
promising perspectives for performance, teaching and anal-
ysis of music content. We are in particular keen to explore
the following ideas:

e Maintain a tight synchronization between the parts
of a score and the full ensemble, in order to reflect
any change (e.g., an annotation).

e Propose new visualizations of music notation, dic-
tated not by performance issues, but by the need to
grasp some analytical aspect.

e Study styling mechanisms which can map an ab-
stract music notational content to sheet representa-
tion.

Our implementation in NEUMA is available to the com-
munity of scholars, musicologist and data scientists who
aim at investigating the corpora of this library for analytic
purposes. We hope that the design presented in the paper is
generic enough to inspire similar endeavours. We will be
glad to provide our software components to anyone wish-
ing to exploit these ideas in a similar system.

Acknowledgments

This work is partially supported by the Musica Consor-
tium, https://humanum.hypotheses.org/503.

7. REFERENCES

[1] E. Selfridge-Field, Ed., Beyond MIDI : The Handbook
of Musical Codes. Cambridge: The MIT Press, 1997.

[2] M. Good, MusicXML for Notation and Analysis. W.
B. Hewlett and E. Selfridge-Field, MIT Press, 2001,
pp. 113-124.

[3] P. Rolland, “The Music Encoding Initiative (MEI),” in
Proc. Intl. Conf. on Musical Applications Using XML,
2002, pp. 55-59.

[4] “Music Encoding Initiative,” http://music-encoding.
org, Music Encoding Initiative, 2015, accessed Oct.
2015.

[5] A. Hankinson, P. Roland, and 1. Fujinaga, “The Music
Encoding Initiative as a Document-Encoding Frame-
work,” in Proc. Intl. Conf. on Music Information Re-
trieval (ISMIR), 2011, pp. 293-298.

[6] “W3C Music Notation Community Group,’
https://www.w3.org/community/music-notation/,
2015, last accessed Jan. 2016.

[7] L. Pugin, J. Kepper, P. Roland, M. Hartwig, and
A. Hankinson, “Separating Presentation and Content
in MEL” in Proc. Intl. Conf. on Music Information Re-
trieval (ISMIR), 2012.

[8] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison-Wesley, 1995.

[9] R. Fournier-S’niehotta, P. Rigaux, and N. Travers,
“An Algebra for Score Content Manipulation,”
CEDRIC laboratory, CNAM-Paris, France, Tech.
Rep. CEDRIC-16-3616, 2016, submitted for publica-
tion. [Online]. Available: http://cedric.cnam.fr/index.
php/publis/article/FRT16d

[10] ——, “Querying XML Score Databases: XQuery
is not Enough!” CEDRIC Ilaboratory, CNAM-
Paris, France, Tech. Rep. CEDRIC-16-3612, 2016,
submitted for publication. [Online]. Available: http:
//cedric.cnam.fr/index.php/publis/article/FRT16¢

https://humanum.hypotheses.org/503
http://music-encoding.org
http://music-encoding.org
http://cedric.cnam.fr/index.php/publis/article/FRT16d
http://cedric.cnam.fr/index.php/publis/article/FRT16d
http://cedric.cnam.fr/index.php/publis/article/FRT16c
http://cedric.cnam.fr/index.php/publis/article/FRT16c

(11]

[12]

[13]

[14]

[15]

[16]

M. S. Cuthbert and C. Ariza, “Music21: A Toolkit
for Computer-Aided Musicology and Symbolic Music
Data,” in Proc. Intl. Conf. on Music Information Re-
trieval (ISMIR), 2010, pp. 637-642.

P. Rigaux, L. Abrouk, H. Audéon, N. Cullot, C. Davy-
Rigaux, Z. Faget, E. Gavignet, D. Gross-Amblard,
A. Tacaille, and V. Thion-Goasdoué, “The design
and implementation of neuma, a collaborative digital
scores library - requirements, architecture, and mod-
els,” Int. J. on Digital Libraries, vol. 12, no. 2-3, pp.
73-88, 2012.

S. Abiteboul, O. Benjelloun, and T. Milo, “The
active XML project: an overview,” VLDB J., vol. 17,
no. 5, pp. 1019-1040, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00778-007-0049-y

R. Typke, F. Wiering, and R. C. Veltkamp, “A Survey
Of Music Information Retrieval Systems,” in Proc. Intl.
Conf. on Music Information Retrieval (ISMIR), 2005.

Z. Faget and P. Rigaux, “A Database Approach to Sym-
bolic Music Content Management,” in Intl. Symp. on
Exploring Music Contents (CMMR), 2010, pp. 303—
320.

J. Ganseman, P. Scheunders, and W. D’haes, “Using
XQuery on MusicXML Databases for Musicological

[17]

(18]

(19]

(20]

(21]

(22]

Analysis,” in Proc. Intl. Conf. on Music Information
Retrieval (ISMIR), 2008.

H. Garcia-Molina, J. Ullman, and J. Widom, Database
System Implementation. Prentice Hall, 2000.

A. Doan, A. Halevy, and Z. Ives, Principles of Data
Integration, 1sted. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2012.

S. Abiteboul and et al., “WebContent: Efficient P2P
Warehousing of Web Data,” in VLDB’08 Very Large
Data Base, August 2008, pp. 1428—-1431.

N. Travers, T. T. D. Ngoc, and T. Liu, “Tgv: A
tree graph view for modeling untyped xquery,” in
(DASFA) 12th International Conference on Database
Systems for Advanced Applications. Springer, 2007,
pp- 1001-1006. [Online]. Available: http://dx.doi.org/
10.1007/978-3-540-71703-4.92

P. Rigaux and Z. Faget, “A database approach to sym-
bolic music content management,” in Exploring Mu-
sic Contents - 7th International Symposium, CMMR
2010, Mdlaga, Spain, June 21-24, 2010. Revised Pa-
pers, 2010, pp. 303-320.

P. Hudak, The Haskell School of Music — From Signals
to Symphonies. (Version 2.6), January 2015.

http://dx.doi.org/10.1007/s00778-007-0049-y
http://dx.doi.org/10.1007/978-3-540-71703-4_92
http://dx.doi.org/10.1007/978-3-540-71703-4_92

	 1. Motivation
	 2. Vision
	 3. The Data Model
	3.1 Schema: events, voices, scores and opera
	3.1.1 Events
	3.1.2 Voices as Time Series
	3.1.3 Scores as synchronized time series
	3.1.4 Corpora as extended relations

	3.2 User query language

	 4. Implementation
	4.1 Architecture and query processing
	4.2 External components

	 5. Related work
	 6. Conclusion and Future work
	 7. References

